Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages

生物 转录组 遗传学 计算生物学 基因 RNA序列 细胞生物学 基因表达
作者
Anushka Gupta,Farnaz Shamsi,Nicolas Altemose,Gabriel Dorlhiac,Aaron M. Cypess,A. White,Nir Yosef,Mary Elizabeth Patti,Yu–Hua Tseng,Aaron Streets
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:32 (2): 242-257 被引量:31
标识
DOI:10.1101/gr.275509.121
摘要

Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution. The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important transcriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis. However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous. We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also providing a detailed understanding for the preferential detection of long genes upon using this technique. To remove such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools. Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kongchao008完成签到,获得积分10
刚刚
hb_li12关注了科研通微信公众号
1秒前
hyc完成签到,获得积分10
1秒前
MrRen完成签到,获得积分10
2秒前
optical完成签到,获得积分10
2秒前
完美世界应助Joy采纳,获得10
2秒前
3秒前
所所应助你是一个好人甲采纳,获得10
3秒前
呵呵发布了新的文献求助10
3秒前
无花果应助小郑的姜姜采纳,获得10
3秒前
wanci应助CCC采纳,获得10
4秒前
ei完成签到,获得积分10
4秒前
xiaohanzai88完成签到,获得积分10
4秒前
K先生完成签到,获得积分10
4秒前
田1986完成签到,获得积分10
5秒前
qian完成签到,获得积分10
5秒前
5秒前
angeldrn完成签到,获得积分10
6秒前
飞天星宇发布了新的文献求助10
7秒前
激昂的亦竹完成签到 ,获得积分10
8秒前
yufanhui完成签到,获得积分0
9秒前
lidm完成签到,获得积分10
9秒前
Dfish完成签到,获得积分10
11秒前
wfafggga完成签到,获得积分10
11秒前
简单灵凡完成签到,获得积分10
11秒前
CHANG完成签到 ,获得积分10
11秒前
ALLon完成签到 ,获得积分10
12秒前
欣喜书桃完成签到,获得积分10
12秒前
搞怪的人龙完成签到,获得积分10
13秒前
13秒前
DCC完成签到,获得积分10
15秒前
夯大力完成签到,获得积分10
15秒前
阿达完成签到,获得积分10
15秒前
小池由希完成签到 ,获得积分10
16秒前
海派Hi完成签到 ,获得积分10
16秒前
田1986发布了新的文献求助10
17秒前
嘤嘤怪完成签到,获得积分10
17秒前
发嗲的雨筠完成签到,获得积分10
17秒前
隐形曼青应助balabala采纳,获得10
17秒前
尘中磨镜人完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642