Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages

生物 转录组 遗传学 计算生物学 基因 RNA序列 细胞生物学 基因表达
作者
Anushka Gupta,Farnaz Shamsi,Nicolas Altemose,Gabriel Dorlhiac,Aaron M. Cypess,A. White,Nir Yosef,Mary Elizabeth Patti,Yu–Hua Tseng,Aaron Streets
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:32 (2): 242-257 被引量:31
标识
DOI:10.1101/gr.275509.121
摘要

Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution. The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important transcriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis. However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous. We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also providing a detailed understanding for the preferential detection of long genes upon using this technique. To remove such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools. Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu完成签到,获得积分10
3秒前
平常冬云完成签到,获得积分20
4秒前
我是老大应助农大彭于晏采纳,获得10
5秒前
6秒前
10秒前
思源应助果冻采纳,获得10
13秒前
13秒前
15秒前
白鹭立雪完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
情怀应助甜甜玫瑰采纳,获得10
16秒前
17秒前
17秒前
17秒前
18秒前
kl完成签到,获得积分10
19秒前
小鹿斑比发布了新的文献求助10
19秒前
白鹭立雪发布了新的文献求助10
20秒前
猫蒲发布了新的文献求助10
21秒前
小马甲应助QQQ采纳,获得10
21秒前
folykiki发布了新的文献求助10
21秒前
农大彭于晏完成签到,获得积分10
22秒前
上官若男应助文承龙采纳,获得10
23秒前
桐桐应助momo采纳,获得10
23秒前
取名叫做利完成签到,获得积分10
23秒前
24秒前
整齐冬瓜完成签到,获得积分10
25秒前
25秒前
小二郎应助小鹿斑比采纳,获得10
26秒前
眼睛大樱桃完成签到,获得积分10
26秒前
26秒前
26秒前
27秒前
非洲大呲花完成签到,获得积分10
28秒前
Ploaris发布了新的文献求助20
28秒前
30秒前
研友_VZG7GZ应助甜甜玫瑰采纳,获得10
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090301
求助须知:如何正确求助?哪些是违规求助? 3628933
关于积分的说明 11505271
捐赠科研通 3341089
什么是DOI,文献DOI怎么找? 1836589
邀请新用户注册赠送积分活动 904535
科研通“疑难数据库(出版商)”最低求助积分说明 822387