已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Characterization of transcript enrichment and detection bias in single-nucleus RNA-seq for mapping of distinct human adipocyte lineages

生物 转录组 遗传学 计算生物学 基因 RNA序列 基因表达
作者
Anushka Gupta,Farnaz Shamsi,Nicolas Altemose,Gabriel Dorlhiac,Aaron M. Cypess,Andrew P. White,Nir Yosef,Mary‐Elizabeth Patti,Yu‐Hua Tseng,Aaron Streets
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:32 (2): 242-257 被引量:49
标识
DOI:10.1101/gr.275509.121
摘要

Single-cell RNA sequencing (scRNA-seq) enables molecular characterization of complex biological tissues at high resolution. The requirement of single-cell extraction, however, makes it challenging for profiling tissues such as adipose tissue, for which collection of intact single adipocytes is complicated by their fragile nature. For such tissues, single-nucleus extraction is often much more efficient and therefore single-nucleus RNA sequencing (snRNA-seq) presents an alternative to scRNA-seq. However, nuclear transcripts represent only a fraction of the transcriptome in a single cell, with snRNA-seq marked with inherent transcript enrichment and detection biases. Therefore, snRNA-seq may be inadequate for mapping important transcriptional signatures in adipose tissue. In this study, we compare the transcriptomic landscape of single nuclei isolated from preadipocytes and mature adipocytes across human white and brown adipocyte lineages, with whole-cell transcriptome. We show that snRNA-seq is capable of identifying the broad cell types present in scRNA-seq at all states of adipogenesis. However, we also explore how and why the nuclear transcriptome is biased and limited, as well as how it can be advantageous. We robustly characterize the enrichment of nuclear-localized transcripts and adipogenic regulatory lncRNAs in snRNA-seq, while also providing a detailed understanding for the preferential detection of long genes upon using this technique. To remove such technical detection biases, we propose a normalization strategy for a more accurate comparison of nuclear and cellular data. Finally, we show successful integration of scRNA-seq and snRNA-seq data sets with existing bioinformatic tools. Overall, our results illustrate the applicability of snRNA-seq for the characterization of cellular diversity in the adipose tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噗噗公主发布了新的文献求助30
刚刚
小马甲应助米酒汤圆采纳,获得10
1秒前
yuanqi发布了新的文献求助10
1秒前
潇洒耷发布了新的文献求助20
1秒前
小槑槑发布了新的文献求助10
1秒前
爆米花应助小艺采纳,获得10
2秒前
3秒前
浮游应助无限续采纳,获得10
3秒前
4秒前
5秒前
dal完成签到,获得积分20
6秒前
小马甲应助Billy采纳,获得10
6秒前
7秒前
陆人甲发布了新的文献求助10
7秒前
yuanqi完成签到,获得积分20
8秒前
9秒前
10秒前
优翎发布了新的文献求助10
10秒前
我是老大应助ABCD采纳,获得10
11秒前
12秒前
米酒汤圆发布了新的文献求助10
12秒前
15秒前
15秒前
靓丽的善斓完成签到,获得积分20
16秒前
JX发布了新的文献求助10
16秒前
Reset完成签到,获得积分10
17秒前
18秒前
Jasper应助小槑槑采纳,获得10
18秒前
优雅醉山发布了新的文献求助10
19秒前
一介尘埃完成签到 ,获得积分10
19秒前
21秒前
21秒前
爱静静应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
浮游应助烂漫羊青采纳,获得10
22秒前
爱静静应助科研通管家采纳,获得10
22秒前
adsifhaidugw应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得20
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
爱静静应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899338
求助须知:如何正确求助?哪些是违规求助? 4179706
关于积分的说明 12975494
捐赠科研通 3943810
什么是DOI,文献DOI怎么找? 2163542
邀请新用户注册赠送积分活动 1181774
关于科研通互助平台的介绍 1087499