Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs)

随机森林 支持向量机 吸附 甲烷 化学 决策树 分子描述符 金属有机骨架 生物系统 机器学习 人工智能 数量结构-活动关系 数据挖掘 计算机科学 有机化学 生物
作者
Maryam Pardakhti,Ehsan Moharreri,David W. Wanik,Steven L. Suib,Ranjan Srivastava
出处
期刊:ACS Combinatorial Science [American Chemical Society]
卷期号:19 (10): 640-645 被引量:228
标识
DOI:10.1021/acscombsci.7b00056
摘要

Using molecular simulation for adsorbent screening is computationally expensive and thus prohibitive to materials discovery. Machine learning (ML) algorithms trained on fundamental material properties can potentially provide quick and accurate methods for screening purposes. Prior efforts have focused on structural descriptors for use with ML. In this work, the use of chemical descriptors, in addition to structural descriptors, was introduced for adsorption analysis. Evaluation of structural and chemical descriptors coupled with various ML algorithms, including decision tree, Poisson regression, support vector machine and random forest, were carried out to predict methane uptake on hypothetical metal organic frameworks. To highlight their predictive capabilities, ML models were trained on 8% of a data set consisting of 130,398 MOFs and then tested on the remaining 92% to predict methane adsorption capacities. When structural and chemical descriptors were jointly used as ML input, the random forest model with 10-fold cross validation proved to be superior to the other ML approaches, with an R2 of 0.98 and a mean absolute percent error of about 7%. The training and prediction using the random forest algorithm for adsorption capacity estimation of all 130,398 MOFs took approximately 2 h on a single personal computer, several orders of magnitude faster than actual molecular simulations on high-performance computing clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋磊发布了新的文献求助10
刚刚
刚刚
1秒前
田様应助linhongwei采纳,获得10
3秒前
3秒前
磨磨发布了新的文献求助10
3秒前
andy完成签到,获得积分10
4秒前
陈星翰发布了新的文献求助10
4秒前
小二郎应助swh采纳,获得10
4秒前
秦梦瑶瑶发布了新的文献求助10
4秒前
开放念云发布了新的文献求助10
4秒前
依旧完成签到 ,获得积分10
4秒前
cd发布了新的文献求助10
5秒前
6秒前
汉堡包应助wwq采纳,获得10
6秒前
domkps完成签到 ,获得积分10
6秒前
Lylin发布了新的文献求助20
7秒前
百无聊赖本人完成签到,获得积分10
7秒前
忙与闲都伤完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
小嘿嘿完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
光坠星海完成签到 ,获得积分10
11秒前
无辜听兰应助坚强凌旋采纳,获得10
12秒前
12秒前
13秒前
黄老板发布了新的文献求助10
13秒前
pky完成签到,获得积分10
13秒前
可爱的函函应助孙翘楚采纳,获得10
14秒前
BulingQAQ发布了新的文献求助10
14秒前
王速临发布了新的文献求助10
15秒前
zZ发布了新的文献求助10
15秒前
pky发布了新的文献求助10
16秒前
陈星翰完成签到,获得积分10
16秒前
16秒前
科目三应助Where采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469301
求助须知:如何正确求助?哪些是违规求助? 4572424
关于积分的说明 14335737
捐赠科研通 4499324
什么是DOI,文献DOI怎么找? 2465014
邀请新用户注册赠送积分活动 1453542
关于科研通互助平台的介绍 1428051