清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robustness of weighted networks

加权网络 二进制数 计算机科学 节点(物理) 稳健性(进化) 度量(数据仓库) 秩(图论) 复杂网络 数据挖掘 数学 算术 工程类 基因 组合数学 万维网 结构工程 生物化学 化学
作者
Michele Bellingeri,Davide Cassi
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:489: 47-55 被引量:73
标识
DOI:10.1016/j.physa.2017.07.020
摘要

Abstract Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术霸王完成签到,获得积分10
2秒前
开心每一天完成签到 ,获得积分10
2秒前
深情安青应助背后半烟采纳,获得10
19秒前
Puan应助科研通管家采纳,获得10
24秒前
24秒前
Puan应助科研通管家采纳,获得10
24秒前
忘忧Aquarius完成签到,获得积分10
31秒前
33秒前
研友_VZG7GZ应助xixi采纳,获得10
34秒前
陶醉的烤鸡完成签到 ,获得积分10
37秒前
40秒前
落后的乌龟完成签到,获得积分10
1分钟前
1分钟前
大脸猫4811发布了新的文献求助20
1分钟前
wrl2023完成签到,获得积分10
1分钟前
1分钟前
热孜宛古丽完成签到,获得积分10
1分钟前
拼搏问薇完成签到 ,获得积分10
1分钟前
大脸猫4811完成签到,获得积分10
1分钟前
1分钟前
852应助读书的时候采纳,获得10
1分钟前
1分钟前
2分钟前
打打应助读书的时候采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
如歌完成签到,获得积分10
2分钟前
Puan应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Puan应助科研通管家采纳,获得10
2分钟前
wanci应助ceeray23采纳,获得20
2分钟前
种下梧桐树完成签到 ,获得积分10
2分钟前
2分钟前
无花果应助ceeray23采纳,获得20
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688257
求助须知:如何正确求助?哪些是违规求助? 5064417
关于积分的说明 15193761
捐赠科研通 4846564
什么是DOI,文献DOI怎么找? 2598929
邀请新用户注册赠送积分活动 1550992
关于科研通互助平台的介绍 1509617