尺度不变特征变换
Orb(光学)
人工智能
计算机视觉
计算机科学
兰萨克
匹配(统计)
旋转(数学)
模式识别(心理学)
失真(音乐)
霍夫变换
特征提取
图像(数学)
数学
统计
计算机网络
放大器
带宽(计算)
作者
Ebrahim Karami,Siva Prasad,Mohamed Shehata
出处
期刊:Cornell University - arXiv
日期:2017-01-01
被引量:276
标识
DOI:10.48550/arxiv.1710.02726
摘要
Fast and robust image matching is a very important task with various applications in computer vision and robotics. In this paper, we compare the performance of three different image matching techniques, i.e., SIFT, SURF, and ORB, against different kinds of transformations and deformations such as scaling, rotation, noise, fish eye distortion, and shearing. For this purpose, we manually apply different types of transformations on original images and compute the matching evaluation parameters such as the number of key points in images, the matching rate, and the execution time required for each algorithm and we will show that which algorithm is the best more robust against each kind of distortion. Index Terms-Image matching, scale invariant feature transform (SIFT), speed up robust feature (SURF), robust independent elementary features (BRIEF), oriented FAST, rotated BRIEF (ORB).
科研通智能强力驱动
Strongly Powered by AbleSci AI