Early Prediction of Chronic Kidney Disease Using Machine Learning Supported by Predictive Analytics

预测分析 机器学习 肾脏疾病 人工智能 计算机科学 分析 透析 肾移植 疾病 集合(抽象数据类型) 医学 数据挖掘 内科学 程序设计语言
作者
Ahmed J. Aljaaf,Dhiya Al‐Jumeily,Hussein M. Haglan,Mohamed Alloghani,Thar Baker,Abir Hussain,Jamila Mustafina
标识
DOI:10.1109/cec.2018.8477876
摘要

Chronic Kidney Disease is a serious lifelong condition that induced by either kidney pathology or reduced kidney functions. Early prediction and proper treatments can possibly stop, or slow the progression of this chronic disease to end-stage, where dialysis or kidney transplantation is the only way to save patient's life. In this study, we examine the ability of several machine-learning methods for early prediction of Chronic Kidney Disease. This matter has been studied widely; however, we are supporting our methodology by the use of predictive analytics, in which we examine the relationship in between data parameters as well as with the target class attribute. Predictive analytics enables us to introduce the optimal subset of parameters to feed machine learning to build a set of predictive models. This study starts with 24 parameters in addition to the class attribute, and ends up by 30 % of them as ideal sub set to predict Chronic Kidney Disease. A total of 4 machine learning based classifiers have been evaluated within a supervised learning setting, achieving highest performance outcomes of AUC 0.995, sensitivity 0.9897, and specificity 1. The experimental procedure concludes that advances in machine learning, with assist of predictive analytics, represent a promising setting by which to recognize intelligent solutions, which in turn prove the ability of predication in the kidney disease domain and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhoujunjie发布了新的文献求助10
1秒前
科研通AI5应助LHL采纳,获得10
1秒前
1秒前
DamenS发布了新的文献求助10
1秒前
ZjutY发布了新的文献求助10
2秒前
竹落笙笙完成签到,获得积分10
2秒前
2秒前
2秒前
小马甲应助丑八怪采纳,获得10
3秒前
3秒前
4秒前
11完成签到,获得积分10
5秒前
蜡笔小鑫完成签到,获得积分10
6秒前
研友_Z6W1b8完成签到,获得积分10
6秒前
学术废物发布了新的文献求助10
6秒前
7秒前
8秒前
11发布了新的文献求助10
8秒前
隐形曼青应助Xiaque采纳,获得10
9秒前
9秒前
波波发布了新的文献求助10
9秒前
xiamovivi发布了新的文献求助10
9秒前
10秒前
完美世界应助tmxx采纳,获得10
11秒前
认真宛白完成签到 ,获得积分10
11秒前
chenshu1完成签到,获得积分10
11秒前
海海完成签到,获得积分10
12秒前
专注迎蕾发布了新的文献求助10
12秒前
在水一方应助许思真采纳,获得10
13秒前
13秒前
学术废物完成签到,获得积分10
13秒前
烟柳画桥完成签到,获得积分10
14秒前
14秒前
LHL发布了新的文献求助10
14秒前
15秒前
16秒前
daisy应助Mxue采纳,获得10
17秒前
隐形曼青应助云澈采纳,获得10
18秒前
忧虑的羊完成签到 ,获得积分10
18秒前
脑洞疼应助coco采纳,获得10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791657
求助须知:如何正确求助?哪些是违规求助? 3336027
关于积分的说明 10278555
捐赠科研通 3052666
什么是DOI,文献DOI怎么找? 1675260
邀请新用户注册赠送积分活动 803270
科研通“疑难数据库(出版商)”最低求助积分说明 761165