Convolutional Neural Network-Based Robust Denoising of Low-Dose Computed Tomography Perfusion Maps

卷积神经网络 成像体模 降噪 灌注 灌注扫描 人工智能 计算机科学 模式识别(心理学) 反褶积 核医学 算法 放射科 医学
作者
Venkata S. Kadimesetty,Sreedevi Gutta,Sriram Ganapathy,Phaneendra K. Yalavarthy
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:3 (2): 137-152 被引量:43
标识
DOI:10.1109/trpms.2018.2860788
摘要

The low-dose computed tomography (CT) perfusion data has low signal-to-noise ratio resulting in derived perfusion maps being noisy. These low-quality maps typically requires a denoising step to improve their utility in real-time. The existing methods, including state-of-the-art online sparse perfusion deconvolution (SPD), largely relies on the convolutional model that may not be applicable in all cases of brain perfusion. In this paper, a denoising convolutional neural network (DCNN) was proposed that relies only on computed perfusion maps for performing the denoising step. The network was trained with a large number of low-dose digital brain phantom perfusion maps to provide an approximation to the corresponding high-dose perfusion maps. The batch normalization coupled with residual learning makes the trained model invariant to the dynamic range of the input low-dose perfusion maps. The denoising of the raw-data using the convolutional neural network was also attempted here and shown to have limited applicability in the low-dose CT perfusion cases. The digital perfusion phantom as well as in-vivo results indicate that the proposed DCNN applied in the derived map domain provides superior improvement compared to the online SPD with an added advantage of being computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NEO发布了新的文献求助30
1秒前
酷炫莺发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
乐观小之应助心心采纳,获得10
5秒前
小蘑菇应助jack采纳,获得10
6秒前
7秒前
8秒前
11秒前
fei完成签到 ,获得积分10
12秒前
lixuerui发布了新的文献求助10
12秒前
YH完成签到,获得积分10
12秒前
猪猪hero应助小文殊采纳,获得10
13秒前
小肥脸儿发布了新的文献求助10
13秒前
4归0发布了新的文献求助10
13秒前
活力的珊完成签到 ,获得积分10
16秒前
16秒前
薛定谔的柯基完成签到,获得积分10
16秒前
Sun完成签到,获得积分10
17秒前
18秒前
19秒前
冯哥侃大山完成签到 ,获得积分10
20秒前
爆米花应助erlangenbio采纳,获得10
20秒前
Kkk发布了新的文献求助10
22秒前
dada发布了新的文献求助10
22秒前
oxear应助酷炫莺采纳,获得10
22秒前
23秒前
木易完成签到,获得积分10
24秒前
含蓄绿兰完成签到,获得积分10
24秒前
lixuerui完成签到,获得积分10
25秒前
1f发布了新的文献求助30
25秒前
25秒前
26秒前
Owen应助小文殊采纳,获得10
27秒前
今后应助等待的花卷采纳,获得10
28秒前
expoem发布了新的文献求助10
28秒前
28秒前
小鲤鱼在睡觉完成签到,获得积分20
29秒前
小肥脸儿完成签到,获得积分10
29秒前
高分求助中
Many-electron theory of superexchange 1000
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Werkstoffe und Bauweisen in der Fahrzeugtechnik 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832915
求助须知:如何正确求助?哪些是违规求助? 3375336
关于积分的说明 10488703
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661