Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach

计算机科学 移动边缘计算 分布式计算 强化学习 服务器 资源配置 云计算 边缘计算 计算机网络 移动计算 软件部署 移动设备 效用计算 人工智能 云安全计算 操作系统
作者
Jiadai Wang,Lei Zhao,Jiajia Liu,Nei Kato
出处
期刊:IEEE Transactions on Emerging Topics in Computing [Institute of Electrical and Electronics Engineers]
卷期号:9 (3): 1529-1541 被引量:430
标识
DOI:10.1109/tetc.2019.2902661
摘要

The development of mobile devices with improving communication and perceptual capabilities has brought about a proliferation of numerous complex and computation-intensive mobile applications. Mobile devices with limited resources face more severe capacity constraints than ever before. As a new concept of network architecture and an extension of cloud computing, Mobile Edge Computing (MEC) seems to be a promising solution to meet this emerging challenge. However, MEC also has some limitations, such as the high cost of infrastructure deployment and maintenance, as well as the severe pressure that the complex and mutative edge computing environment brings to MEC servers. At this point, how to allocate computing resources and network resources rationally to satisfy the requirements of mobile devices under the changeable MEC conditions has become a great aporia. To combat this issue, we propose a smart, Deep Reinforcement Learning based Resource Allocation (DRLRA) scheme, which can allocate computing and network resources adaptively, reduce the average service time and balance the use of resources under varying MEC environment. Experimental results show that the proposed DRLRA performs better than the traditional OSPF algorithm in the mutative MEC conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助彬彬采纳,获得10
刚刚
刚刚
1秒前
manman发布了新的文献求助10
2秒前
科研通AI6应助微笑立轩采纳,获得30
2秒前
2秒前
145263完成签到 ,获得积分10
3秒前
Owen应助shiring采纳,获得10
3秒前
Wenroy完成签到,获得积分10
4秒前
ryan发布了新的文献求助10
4秒前
5秒前
6秒前
小小应助科研通管家采纳,获得10
6秒前
小小应助科研通管家采纳,获得10
6秒前
小小应助科研通管家采纳,获得10
6秒前
小小应助科研通管家采纳,获得10
6秒前
小小应助科研通管家采纳,获得10
6秒前
小小应助科研通管家采纳,获得10
6秒前
小小应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
jiunuan应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
lsl应助科研通管家采纳,获得50
6秒前
Orange应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
刘祺芳发布了新的文献求助10
6秒前
asdfzxcv应助科研通管家采纳,获得10
6秒前
lsl应助科研通管家采纳,获得50
7秒前
asdfzxcv应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
qprcddd发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
ccalvintan发布了新的文献求助10
9秒前
VV发布了新的文献求助10
9秒前
GSirius完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812