汉密尔顿-雅各比-贝尔曼方程
贝尔曼方程
计算机科学
动态规划
上下界
人工神经网络
数学优化
非线性系统
控制(管理)
控制理论(社会学)
事件(粒子物理)
最优控制
功能(生物学)
数学
算法
人工智能
物理
生物
数学分析
进化生物学
量子力学
作者
Biao Luo,Yin Yang,Derong Liu,Huai‐Ning Wu
标识
DOI:10.1109/tnnls.2019.2899594
摘要
This paper studies the problem of event-triggered optimal control (ETOC) for continuous-time nonlinear systems and proposes a novel event-triggering condition that enables designing ETOC methods directly based on the solution of the Hamilton-Jacobi-Bellman (HJB) equation. We provide formal performance guarantees by proving a predetermined upper bound. Moreover, we also prove the existence of a lower bound for interexecution time. For implementation purposes, an adaptive dynamic programming (ADP) method is developed to realize the ETOC using a critic neural network (NN) to approximate the value function of the HJB equation. Subsequently, we prove that semiglobal uniform ultimate boundedness can be guaranteed for states and NN weight errors with the ADP-based ETOC. Simulation results demonstrate the effectiveness of the developed ADP-based ETOC method.
科研通智能强力驱动
Strongly Powered by AbleSci AI