Computational methods to model complex systems in sports injury research: agent-based modelling (ABM) and systems dynamics (SD) modelling

因果关系 计算机科学 鉴定(生物学) 机器学习 复杂系统 过程(计算) 计算模型 数据科学 管理科学 工业工程 人工智能 工程类 操作系统 法学 生物 植物 政治学
作者
Adam Hulme,Scott McLean,Paul M. Salmon,Jason Thompson,Ben R. Lane,Rasmus Oestergaard Nielsen
出处
期刊:British Journal of Sports Medicine [BMJ]
卷期号:53 (24): 1507-1510 被引量:24
标识
DOI:10.1136/bjsports-2018-100098
摘要

‘Systems thinking’,1 2 complexity theory3 and the ‘complex systems approach’4–7 are gaining momentum among leading sports injury researchers. One reason for this is a growing recognition that traditional risk factor identification methods (eg, stepwise regression modelling) fail to reflect the complex mechanisms of sports injury causation.1 4 8 9 Effective sports injury prevention requires us to understand the complex relationships that occur among a ‘web of interacting determinants’,4 rather than try to isolate the causal effect of individual factors .1 To better understand sports injury mechanisms, researchers are exploring several different approaches. One of them—and the focus of this editorial—is using computational methods that have the potential to describe and simulate the complex and dynamic nature of sports injury causation and prevention in ‘complex systems’.1 4 5 7 The main characteristics of complex systems are described in table 1. These characteristics justify the use of two computational modelling approaches: agent-based modelling (ABM) and systems dynamics (SD) modelling. It is important to note that static modelling (eg, computer-based spreadsheets), differential equations, automata and process algebraic models, Bayesian networks, machine learning, neural networks, social network analysis and Monte Carlo methods are, unlike ABM and SD modelling, not able to model or simulate dynamic causal feedback among fundamentally different factors. Rather, predictive and simple statistical modelling, as well as mathematical algorithms that forecast the probability of future events, are useful for understanding certain aspects of complex systems at fixed time points and/or across one or more levels. These latter approaches are still computational in nature; however, they serve a purpose for a specific type of problem. We also alert the reader that the use of advanced statistical modelling to better understand the complex relationships between time-varying exposures (eg, training/match workloads) and sports injury development (eg, …
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃大屁发布了新的文献求助10
1秒前
Eleven发布了新的文献求助30
1秒前
子铭发布了新的文献求助10
2秒前
2秒前
wyc发布了新的文献求助10
2秒前
星辰大海应助扳迪采纳,获得10
2秒前
Jal578发布了新的文献求助10
3秒前
luo完成签到,获得积分10
3秒前
4秒前
爱科研的罗罗完成签到,获得积分10
4秒前
科研通AI5应助JIUR采纳,获得10
5秒前
5秒前
mufcyang发布了新的文献求助10
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
调皮黑猫应助科研通管家采纳,获得80
7秒前
7秒前
7秒前
7秒前
yc发布了新的文献求助10
8秒前
sjx完成签到,获得积分10
9秒前
10秒前
10秒前
无花果应助QIAN采纳,获得10
10秒前
吴旭东完成签到,获得积分10
11秒前
11秒前
张张upup发布了新的文献求助10
11秒前
12秒前
香蕉觅云应助不知小翻采纳,获得10
12秒前
12秒前
扳迪完成签到,获得积分10
13秒前
闪闪小小完成签到 ,获得积分10
13秒前
明理十三发布了新的文献求助10
15秒前
www发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810928
求助须知:如何正确求助?哪些是违规求助? 3355371
关于积分的说明 10375682
捐赠科研通 3072163
什么是DOI,文献DOI怎么找? 1687237
邀请新用户注册赠送积分活动 811523
科研通“疑难数据库(出版商)”最低求助积分说明 766677