Computational Prediction of the Site(s) of Metabolism and Binding Modes of Protein Kinase Inhibitors Metabolized by CYP3A4

对接(动物) 活动站点 化学 结合位点 计算生物学 立体化学 生物化学 生物 医学 护理部
作者
Pramod C. Nair,Ross A. McKinnon,John O. Miners
出处
期刊:Drug Metabolism and Disposition [American Society for Pharmacology and Experimental Therapeutics]
卷期号:47 (6): 616-631 被引量:15
标识
DOI:10.1124/dmd.118.085167
摘要

Protein kinase inhibitors (KIs), which are mainly biotransformed by CYP3A4-catalyzed oxidation, represent a rapidly expanding class of drugs used primarily for the treatment of cancer. Ligand- and structure-based methods were applied here to investigate whether computational approaches may be used to predict the site(s) of metabolism (SOM) of KIs and to identify amino acids within the CYP3A4 active site involved in KI binding. A data set of the experimentally determined SOMs of 31 KIs known to undergo biotransformation by CYP3A4 was collated. The structure-based (molecular docking) approach employed three CYP3A4 X-ray crystal structures to account for structural plasticity of this enzyme. Docking pose and SOM predictivity were influenced by the X-ray crystal template used for docking and the scoring function used for ranking binding poses. The best prediction of SOM (77%) was achieved using the substrate (bromoergocryptine)-bound X-ray crystal template together with the potential of mean force score. Binding interactions of KIs with CYP3A4 active site residues were generally similar to those observed for other substrates of this enzyme. The ligand-based molecular superposition approach, using bromoergocryptine from the X-ray cocrystal structure as a template, poorly predicted (42%) the SOM of KIs, although predictivity improved to 71% when the docked conformation of sorafenib was used as the template. Among the web-based approaches examined, all web servers provided excellent predictivity, with one web server predicting the SOM of 87% of the data set molecules. Computational approaches may be used to predict the SOM of KIs, and presumably other classes of CYP3A4 substrates, but predictivity varies between methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助zy采纳,获得10
1秒前
小马发布了新的文献求助10
2秒前
4秒前
Fezz发布了新的文献求助10
5秒前
有点儿微胖完成签到,获得积分10
7秒前
7秒前
unowhoiam完成签到 ,获得积分10
8秒前
8秒前
Ava应助jiajia采纳,获得10
8秒前
8秒前
田様应助小马采纳,获得10
8秒前
Fezz完成签到,获得积分10
11秒前
11秒前
12秒前
汽水完成签到,获得积分20
12秒前
SciGPT应助搬砖美少女采纳,获得10
12秒前
zy发布了新的文献求助10
13秒前
妙旋克里斯完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
安静发布了新的文献求助10
15秒前
Oshur发布了新的文献求助10
15秒前
Rewi_Zhang完成签到,获得积分10
17秒前
哈哈哈完成签到,获得积分10
17秒前
pluto应助花在开采纳,获得10
17秒前
18秒前
曾经沛白完成签到 ,获得积分10
18秒前
干净书琴完成签到,获得积分10
19秒前
20秒前
六子发布了新的文献求助10
21秒前
高敏完成签到,获得积分10
21秒前
烟花应助zjcbk985采纳,获得10
22秒前
星河完成签到,获得积分10
22秒前
研究水合物的小白完成签到 ,获得积分10
22秒前
乔峰发布了新的文献求助10
22秒前
zy完成签到,获得积分10
23秒前
啊锐完成签到,获得积分0
23秒前
112我的发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775044
求助须知:如何正确求助?哪些是违规求助? 4107653
关于积分的说明 12705838
捐赠科研通 3828709
什么是DOI,文献DOI怎么找? 2112217
邀请新用户注册赠送积分活动 1136106
关于科研通互助平台的介绍 1019705