亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques

计算生物学 DNA微阵列 小分子 化学 血浆蛋白结合 生物系统 计算机科学 生物物理学 生物 生物化学 基因表达 基因
作者
Takashi Tajimi,Naoki Wakui,Keisuke Yanagisawa,Yasushi Yoshikawa,Masahito Ohue,Yutaka Akiyama
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:19 (S19) 被引量:14
标识
DOI:10.1186/s12859-018-2529-z
摘要

Cyclic peptide-based drug discovery is attracting increasing interest owing to its potential to avoid target protein depletion. In drug discovery, it is important to maintain the biostability of a drug within the proper range. Plasma protein binding (PPB) is the most important index of biostability, and developing a computational method to predict PPB of drug candidate compounds contributes to the acceleration of drug discovery research. PPB prediction of small molecule drug compounds using machine learning has been conducted thus far; however, no study has investigated cyclic peptides because experimental information of cyclic peptides is scarce.First, we adopted sparse modeling and small molecule information to construct a PPB prediction model for cyclic peptides. As cyclic peptide data are limited, applying multidimensional nonlinear models involves concerns regarding overfitting. However, models constructed by sparse modeling can avoid overfitting, offering high generalization performance and interpretability. More than 1000 PPB data of small molecules are available, and we used them to construct a prediction models with two enumeration methods: enumerating lasso solutions (ELS) and forward beam search (FBS). The accuracies of the prediction models constructed by ELS and FBS were equal to or better than those of conventional non-linear models (MAE = 0.167-0.174) on cross-validation of a small molecule compound dataset. Moreover, we showed that the prediction accuracies for cyclic peptides were close to those for small molecule compounds (MAE = 0.194-0.288). Such high accuracy could not be obtained by a simple method of learning from cyclic peptide data directly by lasso regression (MAE = 0.286-0.671) or ridge regression (MAE = 0.244-0.354).In this study, we proposed a machine learning techniques that uses low-dimensional sparse modeling to predict the PPB value of cyclic peptides computationally. The low-dimensional sparse model not only exhibits excellent generalization performance but also improves interpretation of the prediction model. This can provide common an noteworthy knowledge for future cyclic peptide drug discovery studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
han完成签到 ,获得积分10
13秒前
22秒前
Lilial发布了新的文献求助10
27秒前
poki完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
49秒前
1分钟前
KINGAZX完成签到 ,获得积分10
1分钟前
灯光师应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
cy0824完成签到 ,获得积分10
2分钟前
Fa完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
火星的雪完成签到 ,获得积分0
3分钟前
3分钟前
灯光师应助科研通管家采纳,获得10
3分钟前
灯光师应助科研通管家采纳,获得30
3分钟前
赘婿应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
breeze完成签到,获得积分10
5分钟前
5分钟前
灯光师应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
Virtual应助Amber采纳,获得10
6分钟前
6分钟前
anders完成签到 ,获得积分10
6分钟前
Benhnhk21发布了新的文献求助10
6分钟前
6分钟前
Benhnhk21完成签到,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
waomi发布了新的文献求助10
8分钟前
8分钟前
waomi完成签到,获得积分10
8分钟前
行云流水完成签到,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
9分钟前
糖伊发布了新的文献求助10
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280150
求助须知:如何正确求助?哪些是违规求助? 3808225
关于积分的说明 11929322
捐赠科研通 3455599
什么是DOI,文献DOI怎么找? 1895138
邀请新用户注册赠送积分活动 944414
科研通“疑难数据库(出版商)”最低求助积分说明 848230