控制理论(社会学)
人工神经网络
水准点(测量)
非线性系统
执行机构
涡轮机
计算机科学
控制工程
断层(地质)
反向传播
鲁棒控制
故障检测与隔离
工程类
控制系统
人工智能
控制(管理)
电气工程
物理
地质学
大地测量学
机械工程
地震学
量子力学
地理
作者
Reihane Rahimilarki,Zhiwei Gao,Aihua Zhang,Richard Binns
标识
DOI:10.1109/tii.2019.2893845
摘要
In this paper, a robust fault estimation approach is proposed for multi-input and multioutput nonlinear dynamic systems on the basis of back propagation neural networks. The augmented system approach, input-to-state stability theory, linear matrix inequality optimization, and neural network training/learning are integrated so that a robust simultaneous estimate of system states and actuator faults are achieved. The proposed approaches are finally applied to a 4.8 MW wind turbine benchmark system, and the effectiveness is well demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI