纤维增强塑料
模板
抗弯强度
材料科学
结构工程
复合材料
弯曲
三点弯曲试验
钢筋
玻璃纤维
极限抗拉强度
参数统计
有限元法
工程类
数学
统计
作者
Weina Meng,Kamal H. Khayat
摘要
The use of glass fiber-reinforced polymer (GFRP) grids in reinforced concrete construction offers several advantages, such as high tensile strength and excellent corrosion resistance. This paper presents the results of experimental and numerical studies of the flexural performance of ultrahigh-performance concrete (UHPC) panels reinforced with GFRP grids. Such panels can be prefabricated and used as permanent formwork elements for bridge columns or walls. The mechanical properties of GFRP grids and UHPC were experimentally evaluated. The flexural performance of panels containing different reinforcement configurations was evaluated in three-point bending tests. The GFRP grids were found to be able to significantly enhance the flexural performance of the UHPC panels. A three-dimensional nonlinear finite element model was established by using ABAQUS, which incorporated the concrete damage plasticity model and can be used to predict the postfracture behaviors. The numerical model was experimentally validated by using the three-point bending test results and was then used for parametric studies. The studied parameters included the panel thickness and the layer number of the GFRP grids reinforcement. The proposed GFRP–UHPC panel system was shown to be promising for the development of lightweight, high-performance permanent formwork. Such formwork can be used in the accelerated construction of critical infrastructures for the enhancement of crack resistance and extension of the service life.
科研通智能强力驱动
Strongly Powered by AbleSci AI