Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran)

均方误差 随机森林 合成孔径雷达 遥感 感知器 多层感知器 人工神经网络 支持向量机 计算机科学 环境科学 人工智能 数学 地质学 统计
作者
Sasan Vafaei,Javad Soosani,Kamran Adeli,Hadi Fadaei,Hamed Naghavi,Tien Dat Pham,Dieu Tien Bui
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:10 (2): 172-172 被引量:238
标识
DOI:10.3390/rs10020172
摘要

The main objective of this research is to investigate the potential combination of Sentinel-2A and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite -2 Phased Array type L-band Synthetic Aperture Radar-2) imagery for improving the accuracy of the Aboveground Biomass (AGB) measurement. According to the current literature, this kind of investigation has rarely been conducted. The Hyrcanian forest area (Iran) is selected as the case study. For this purpose, a total of 149 sample plots for the study area were documented through fieldwork. Using the imagery, three datasets were generated including the Sentinel-2A dataset, the ALOS-2 PALSAR-2 dataset, and the combination of the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset (Sentinel-ALOS). Because the accuracy of the AGB estimation is dependent on the method used, in this research, four machine learning techniques were selected and compared, namely Random Forests (RF), Support Vector Regression (SVR), Multi-Layer Perceptron Neural Networks (MPL Neural Nets), and Gaussian Processes (GP). The performance of these AGB models was assessed using the coefficient of determination (R2), the root-mean-square error (RMSE), and the mean absolute error (MAE). The results showed that the AGB models derived from the combination of the Sentinel-2A and the ALOS-2 PALSAR-2 data had the highest accuracy, followed by models using the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset. Among the four machine learning models, the SVR model (R2 = 0.73, RMSE = 38.68, and MAE = 32.28) had the highest prediction accuracy, followed by the GP model (R2 = 0.69, RMSE = 40.11, and MAE = 33.69), the RF model (R2 = 0.62, RMSE = 43.13, and MAE = 35.83), and the MPL Neural Nets model (R2 = 0.44, RMSE = 64.33, and MAE = 53.74). Overall, the Sentinel-2A imagery provides a reasonable result while the ALOS-2 PALSAR-2 imagery provides a poor result of the forest AGB estimation. The combination of the Sentinel-2A imagery and the ALOS-2 PALSAR-2 imagery improved the estimation accuracy of AGB compared to that of the Sentinel-2A imagery only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zcr完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
科研仓鼠发布了新的文献求助10
3秒前
orixero应助Yuki采纳,获得10
4秒前
脑洞疼应助正直尔容采纳,获得10
5秒前
nkk发布了新的文献求助10
6秒前
burning完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
11秒前
舒舒发布了新的文献求助10
12秒前
瘦瘦妖妖发布了新的文献求助10
13秒前
14秒前
溧子呀发布了新的文献求助10
15秒前
枳甜发布了新的文献求助10
16秒前
嘉平发布了新的文献求助20
16秒前
17秒前
今后应助舒舒采纳,获得10
19秒前
王博士完成签到,获得积分10
19秒前
梦亦非发布了新的文献求助10
20秒前
风趣的丹蝶完成签到,获得积分10
20秒前
20秒前
阿冰发布了新的文献求助10
21秒前
星辰大海应助溧子呀采纳,获得10
22秒前
23秒前
倾听阳光发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
ev-nano发布了新的文献求助10
25秒前
酷波er应助cici采纳,获得10
25秒前
冰魂应助tkx是流氓兔采纳,获得10
26秒前
tomorrow完成签到 ,获得积分10
26秒前
科研通AI5应助个十百千萬采纳,获得10
27秒前
27秒前
梦亦非完成签到,获得积分10
28秒前
华风完成签到,获得积分10
28秒前
西柚稀有西柚完成签到,获得积分10
30秒前
31秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867367
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664684
捐赠科研通 3133945
什么是DOI,文献DOI怎么找? 1728674
邀请新用户注册赠送积分活动 833052
科研通“疑难数据库(出版商)”最低求助积分说明 780550