Machinery health prognostics: A systematic review from data acquisition to RUL prediction

预言 过程(计算) 领域(数学) 可靠性工程 数据采集 计算机科学 数据挖掘 数据科学 工程类 系统工程 风险分析(工程) 数学 医学 操作系统 纯数学
作者
Yaguo Lei,Naipeng Li,Liang Guo,Ningbo Li,Tao Yan,Jing Lin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:104: 799-834 被引量:1927
标识
DOI:10.1016/j.ymssp.2017.11.016
摘要

Machinery prognostics is one of the major tasks in condition based maintenance (CBM), which aims to predict the remaining useful life (RUL) of machinery based on condition information. A machinery prognostic program generally consists of four technical processes, i.e., data acquisition, health indicator (HI) construction, health stage (HS) division, and RUL prediction. Over recent years, a significant amount of research work has been undertaken in each of the four processes. And much literature has made an excellent overview on the last process, i.e., RUL prediction. However, there has not been a systematic review that covers the four technical processes comprehensively. To fill this gap, this paper provides a review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction. First, in data acquisition, several prognostic datasets widely used in academic literature are introduced systematically. Then, commonly used HI construction approaches and metrics are discussed. After that, the HS division process is summarized by introducing its major tasks and existing approaches. Afterwards, the advancements of RUL prediction are reviewed including the popular approaches and metrics. Finally, the paper provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴怜翠发布了新的文献求助10
刚刚
洁净笑白发布了新的文献求助10
刚刚
tanwenbin完成签到,获得积分10
刚刚
2秒前
daqing完成签到,获得积分20
3秒前
浅忆完成签到 ,获得积分10
3秒前
lhjct0313发布了新的文献求助30
4秒前
4秒前
6秒前
APS发布了新的文献求助10
7秒前
So完成签到 ,获得积分10
7秒前
斯文败类应助洁净笑白采纳,获得10
7秒前
8秒前
所所应助tan_sg采纳,获得10
8秒前
体贴怜翠完成签到,获得积分10
8秒前
果粒橙应助怎么睡不醒采纳,获得10
9秒前
科研通AI5应助YY本Y采纳,获得10
9秒前
9秒前
9秒前
9秒前
剪刀手完成签到 ,获得积分10
9秒前
上官若男应助被淹死的鱼采纳,获得30
9秒前
尼萌尼萌完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
万能图书馆应助正直凌文采纳,获得10
11秒前
12秒前
大辉发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
dou发布了新的文献求助10
15秒前
CXWANG完成签到,获得积分10
16秒前
16秒前
小花完成签到 ,获得积分10
16秒前
云辞忧完成签到,获得积分10
17秒前
喵喵666完成签到,获得积分10
18秒前
18秒前
18秒前
1111应助Rain采纳,获得10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4238921
求助须知:如何正确求助?哪些是违规求助? 3772675
关于积分的说明 11847956
捐赠科研通 3428534
什么是DOI,文献DOI怎么找? 1881611
邀请新用户注册赠送积分活动 933811
科研通“疑难数据库(出版商)”最低求助积分说明 840575