运行x2
生物
Wnt信号通路
多余的
臼齿
SOX2
细胞生物学
解剖
信号转导
转录因子
遗传学
基因
古生物学
作者
Yumiko Togo,Katsu Takahashi,Kazuyuki Saito,Honoka Kiso,Hiroko Tsukamoto,Boyen Huang,Motoko Yanagita,Manabu Sugai,Hidemitsu Harada,Toshihisa Komori,Akira Shimizu,Mary MacDougall,Kazuhisa Bessho
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2016-08-12
卷期号:11 (8): e0161067-e0161067
被引量:72
标识
DOI:10.1371/journal.pone.0161067
摘要
Supernumerary teeth and tooth agenesis are common morphological anomalies in humans. We previously obtained evidence that supernumerary maxillary incisors form as a result of the successive development of the rudimentary maxillary incisor tooth germ in Usag-1 null mice. The development of tooth germs is arrested in Runx2 null mice, and such mice also exhibit lingual epithelial buds associated with the upper molars and incisors. The aim of this study is to investigate the potential crosstalk between Usag-1 and Runx2 during tooth development. In the present study, three interesting phenomena were observed in double null Usag-1-/-/Runx2-/- mice: the prevalence of supernumerary teeth was lower than in Usag-1 null mice; tooth development progressed further compared than in Runx2 null mice; and the frequency of molar lingual buds was lower than in Runx2 null mice. Therefore, we suggest that RUNX2 and USAG-1 act in an antagonistic manner. The lingual bud was completely filled with odontogenic epithelial Sox2-positive cells in the Usag-1+/+/Runx2-/- mice, whereas almost no odontogenic epithelial Sox2-positive cells contributed to supernumerary tooth formation in the rudimentary maxillary incisors of the Usag-1-/-/Runx2+/+ mice. Our findings suggest that RUNX2 directly or indirectly prevents the differentiation and/or proliferation of odontogenic epithelial Sox2-positive cells. We hypothesize that RUNX2 inhibits the bone morphogenetic protein (BMP) and/or Wnt signaling pathways regulated by USAG-1, whereas RUNX2 expression is induced by BMP signaling independently of USAG-1.
科研通智能强力驱动
Strongly Powered by AbleSci AI