亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Consistency analysis of forest height retrievals between GEDI and ICESat-2

遥感 环境科学 一致性(知识库) 地质学 数学 几何学
作者
Xiaoxiao Zhu,Sheng Nie,Cheng Wang,Xiaohuan Xi,Jieying Lao,Dong Li
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:281: 113244-113244 被引量:62
标识
DOI:10.1016/j.rse.2022.113244
摘要

Two space-borne LiDAR missions (Global Ecosystem Dynamics Investigation, GEDI; Ice, Cloud, and land Elevation Satellite-2, ICESat-2) have unique advantages in retrieving forest heights. Fusing these two missions will greatly increase the number of forest height samples and realize their geographical complementarity, providing unprecedented opportunities for global forest height mapping. However, ICESat-2 and GEDI use different LiDAR technologies, which may lead to inconsistencies in the forest height estimation between the two missions. This study aims to explore the potential of obtaining consistent forest heights from ICESat-2 and GEDI data in support of global forest height mapping. First, the accuracies of GEDI and ICESat-2 forest heights in four different scenarios (nigh/daytime and strong/weak beam) were validated and compared utilizing airborne LiDAR data. Second, we quantitatively evaluated the differences in the forest heights derived from the GEDI and ICESat-2 data within their overlapping footprints and analyzed the effects of the terrain slope, forest coverage, forest type and study site on these differences. Third, the forest height consistency models were built based on GEDI-derived forest heights and ICESat-2 feature parameters using stepwise regression (SR) and random forest (RF) algorithms as well as a combination of both SR and RF algorithms. Finally, we evaluated the transferability of forest height consistency models to different forest types and study sites, and further analyzed the potential of building a universally consistent model. The results showed that the accuracies of both GEDI and ICESat-2 derived forest heights differ among four different scenarios, and the accuracy of forest heights extracted from GEDI data (R 2 = 0.93, RMSE = 2.99 m for power beams at night) is higher than that extracted from ICESat-2 data (R 2 = 0.78, RMSE = 4.62 m for strong beams at night) regardless of scenarios. The forest height differences exist between these two missions, and show an apparent change trend with increasing forest coverage. By establishing the consistency models, the forest height difference between GEDI and ICESat-2 can be reduced. Compared to the forest height consistency models built by SR or RF algorithms, the consistency models established by combining the RF and SR algorithms have higher accuracy (average R 2 = 0.86, RMSE = 2.56 m for ATL08). Additionally, the consistency models developed specifically for one forest type or study site are less transferable, while a universal consistency model is applicable for various vegetation types and study sites. After building a universal consistency model based on both SR and RF algorithms, the consistent forest heights were obtained from GEDI and ICESat-2 data. Overall, this study demonstrates the possibility of combining different modes of space-borne LiDAR data to obtain consistent forest height datasets. • The GEDI data outperforms ICESat-2 data in forest height retrieval. • Adifference exists in theforest heights extracted from GEDI and ICESat-2 data. • Forest height consistency modelsreduce GEDI and ICESat-2 forest height difference. • We evaluated and compared the transferability of forest height consistency models. • GEDI and ICESat-2 data can be usedto obtain forest heightswith high consistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Eris采纳,获得10
1秒前
4秒前
zcr完成签到,获得积分10
5秒前
久等雨归完成签到,获得积分10
7秒前
8秒前
12秒前
今后应助白晔采纳,获得10
12秒前
16秒前
善学以致用应助ppg123采纳,获得10
17秒前
17秒前
Eris发布了新的文献求助10
18秒前
Adc应助Aurora采纳,获得10
19秒前
曼城是冠军完成签到,获得积分10
21秒前
慕青应助自信寻真采纳,获得20
22秒前
23秒前
23秒前
久等雨归发布了新的文献求助10
24秒前
24秒前
light完成签到,获得积分10
25秒前
Eris完成签到,获得积分10
27秒前
28秒前
ppg123发布了新的文献求助10
28秒前
SciGPT应助热情的c99采纳,获得10
35秒前
36秒前
37秒前
38秒前
orixero应助久等雨归采纳,获得10
38秒前
kong发布了新的文献求助10
39秒前
Ava应助哈比人linling采纳,获得10
40秒前
桔子发布了新的文献求助10
42秒前
领导范儿应助霸气乐菱采纳,获得10
53秒前
希望天下0贩的0应助wwf采纳,获得10
57秒前
59秒前
1分钟前
Ariel完成签到 ,获得积分10
1分钟前
11111发布了新的文献求助10
1分钟前
Kathy完成签到,获得积分10
1分钟前
1分钟前
kong完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671