量子卷积码
Reed–Solomon错误更正
量子
离散数学
区块代码
数学
级联纠错码
量子纠错
量子算法
计算机科学
物理
量子力学
算法
解码方法
标识
DOI:10.1142/s0219749923500235
摘要
Quantum maximum-distance-separable (MDS) codes play an important role in the quantum codes. The previous quantum MDS codes had been constructed according to [Formula: see text] is odd or even. However, such classification omits to consider some special categories of quantum MDS codes. Because of this, we will discuss the other classifications of [Formula: see text]. In this paper, we construct some new [Formula: see text]-ary quantum MDS codes from generalized Reed–Solomon codes by using Hermitian construction, and prove that these quantum MDS codes have minimum distance greater than [Formula: see text], where [Formula: see text].
科研通智能强力驱动
Strongly Powered by AbleSci AI