Decoding lexical tones and vowels in imagined tonal monosyllables using fNIRS signals

普通话 语音识别 脑-机接口 元音 计算机科学 语调(文学) 脑功能偏侧化 脑电图 心理学 认知心理学 语言学 精神科 哲学
作者
Zengzhi Guo,Fei Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066007-066007 被引量:8
标识
DOI:10.1088/1741-2552/ac9e1d
摘要

Abstract Objective. Speech is a common way of communication. Decoding verbal intent could provide a naturalistic communication way for people with severe motor disabilities. Active brain computer interaction (BCI) speller is one of the most commonly used speech BCIs. To reduce the spelling time of Chinese words, identifying vowels and tones that are embedded in imagined Chinese words is essential. Functional near-infrared spectroscopy (fNIRS) has been widely used in BCI because it is portable, non-invasive, safe, low cost, and has a relatively high spatial resolution. Approach. In this study, an active BCI speller based on fNIRS is presented by covertly rehearsing tonal monosyllables with vowels (i.e. /a/, /i/, /o/, and /u/) and four lexical tones in Mandarin Chinese (i.e. tones 1, 2, 3, and 4) for 10 s. Main results. fNIRS results showed significant differences in the right superior temporal gyrus between imagined vowels with tone 2/3/4 and those with tone 1 (i.e. more activations and stronger connections to other brain regions for imagined vowels with tones 2/3/4 than for those with tone 1). Speech-related areas for tone imagery (i.e. the right hemisphere) provided majority of information for identifying tones, while the left hemisphere had advantages in vowel identification. Having decoded both vowels and tones during the post-stimulus 15 s period, the average classification accuracies exceeded 40% and 70% in multiclass (i.e. four classes) and binary settings, respectively. To spell words more quickly, the time window size for decoding was reduced from 15 s to 2.5 s while the classification accuracies were not significantly reduced. Significance. For the first time, this work demonstrated the possibility of discriminating lexical tones and vowels in imagined tonal syllables simultaneously. In addition, the reduced time window for decoding indicated that the spelling time of Chinese words could be significantly reduced in the fNIRS-based BCIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuangshuang完成签到,获得积分10
1秒前
2秒前
无极微光应助eddy采纳,获得20
3秒前
俊逸盛男完成签到,获得积分10
3秒前
3秒前
3秒前
yx发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
阿甲完成签到,获得积分10
4秒前
李安全完成签到,获得积分10
4秒前
zehua309完成签到,获得积分10
5秒前
5秒前
5秒前
无辜大神完成签到,获得积分10
6秒前
居居子完成签到,获得积分10
6秒前
dogsday完成签到,获得积分10
6秒前
nnn完成签到,获得积分10
7秒前
小王爱科研完成签到,获得积分10
7秒前
qiaoyun发布了新的文献求助10
7秒前
李三今完成签到,获得积分10
7秒前
Ma_80814发布了新的文献求助10
8秒前
Scout发布了新的文献求助10
8秒前
深情安青应助小北采纳,获得10
8秒前
标致水之发布了新的文献求助10
8秒前
翻斗花园612完成签到,获得积分10
8秒前
wxzk发布了新的文献求助10
9秒前
9秒前
aIARLAE发布了新的文献求助10
9秒前
清爽的孤萍完成签到,获得积分10
9秒前
洋洋洋完成签到,获得积分10
10秒前
entang完成签到,获得积分10
10秒前
阿甲发布了新的文献求助10
10秒前
哇咔咔发布了新的文献求助10
10秒前
隐形曼青应助Huang_being采纳,获得20
10秒前
甜甜凌珍完成签到,获得积分10
10秒前
小鹿斑斑比完成签到,获得积分10
11秒前
11秒前
湖畔给湖畔的求助进行了留言
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5725041
求助须知:如何正确求助?哪些是违规求助? 5293936
关于积分的说明 15302192
捐赠科研通 4872804
什么是DOI,文献DOI怎么找? 2617190
邀请新用户注册赠送积分活动 1567013
关于科研通互助平台的介绍 1524041