亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Apis-Prime: A deep learning model to optimize beehive monitoring system for the task of daily weight estimation

蜂巢 计算机科学 素数(序理论) 人工智能 比例(比率) 机器学习 生态学 数学 地理 组合数学 生物 地图学
作者
Omar Anwar,Adrian Keating,Rachel Cardell‐Oliver,Amitava Datta,Gino Putrino
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:144: 110546-110546 被引量:5
标识
DOI:10.1016/j.asoc.2023.110546
摘要

This work present Apis-Prime,2a hybrid deep learning model for soft sensing and time series forecasting, to estimate the daily weight variations of honeybee hives. Apis-Prime improves the state-of-the-art of earlier proposed WE-Bee (Anwar et al., 2022), and also helps optimize the beehive monitoring systems for the task of daily weight variation estimation. Weight variations of a honeybee hive are the most important indicator of hive productivity, and the health and strength of a bee colony. Currently, precise measurement of the weight of a hive requires an expensive weighing scale under each hive. On the other hand, sensors deployed inside the hive are cheaper than a weighing scale, and are shielded from the extreme weather variations outside the hive. In this work, honeybee activity is monitored using data from sensors inside the hive, along with monitoring the information related to the seasons, time of the day, external weather and the size of hive. Apis-Prime's deep learning algorithm is based on two self-attention encoders, which collectively transform the sensor data into daily weight variations of the hive. Two parallel encoders simultaneously pay attention to time based relationships and feature based relationships within the daily sensor data, and generate daily hive weight estimates with a better accuracy. Comparison shows an average error of 19.7 grams/frame for Apis-Prime, compared to 21.05 grams/frame for the earlier proposed model WE-Bee. For system optimization, this work uses the attention weights of trained encoders of Apis-Prime to evaluate the sensors features collected by the monitoring system. This evaluation is used to identify and remove the unnecessary sensors/features from the dataset, reducing the number of features from 36 to 23, hence providing a significant optimization of cost, power and data-bandwidth. We provide a performance analysis of beehive weight estimations by Apis-Prime using the complete, as well as the optimized dataset on 2,170 days of beehive sensor recordings. Equally good results of daily weight estimations using the optimized feature set demonstrate the efficacy of proposed model for optimization of beehive monitoring system for the task of hive weight estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭娅楠完成签到 ,获得积分10
1秒前
stop here完成签到,获得积分10
3秒前
4秒前
dream177777发布了新的文献求助10
8秒前
Lin_Yongqi发布了新的文献求助10
9秒前
11秒前
15秒前
笨笨的怜雪完成签到 ,获得积分10
16秒前
无奈秋荷发布了新的文献求助10
17秒前
明理汉堡完成签到 ,获得积分10
17秒前
21秒前
亮子完成签到,获得积分10
22秒前
24秒前
常小敏发布了新的文献求助10
24秒前
Lin_Yongqi发布了新的文献求助10
28秒前
小源同学发布了新的文献求助10
29秒前
景行行止完成签到 ,获得积分10
34秒前
36秒前
叉叉发布了新的文献求助10
48秒前
Lin_Yongqi完成签到,获得积分10
48秒前
49秒前
小源同学完成签到,获得积分10
53秒前
adddddd发布了新的文献求助10
54秒前
58秒前
火火完成签到 ,获得积分10
1分钟前
Deannn778发布了新的文献求助10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
wanci应助可靠白卉采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
张怡博完成签到 ,获得积分10
1分钟前
dream177777发布了新的文献求助10
1分钟前
mumumuzzz发布了新的文献求助30
1分钟前
可靠白卉发布了新的文献求助10
1分钟前
情怀应助pluvia采纳,获得10
1分钟前
1分钟前
沐阳发布了新的文献求助10
1分钟前
Caroline完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847608
求助须知:如何正确求助?哪些是违规求助? 3390258
关于积分的说明 10561227
捐赠科研通 3110591
什么是DOI,文献DOI怎么找? 1714415
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775375