Water Vapor Induced Superionic Conductivity in ZnPS3

化学 离子电导率 电导率 离子 离子键合 水蒸气 化学物理 介电谱 离子运输机 快离子导体 无机化学 分析化学(期刊) 电化学 电极 物理化学 电解质 环境化学 有机化学
作者
Zachery W. B. Iton,Brian C. Lee,Anxiao Jiang,Seong Shik Kim,Michael Brady,Sammy Shaker,Kimberly A. See
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (24): 13312-13325 被引量:1
标识
DOI:10.1021/jacs.3c03368
摘要

Next-generation batteries based on sustainable multivalent working ions, such as Mg2+, Ca2+, or Zn2+, have the potential to improve the performance, safety, and capacity of current battery systems. Development of such multivalent ion batteries is hindered by a lack of understanding of multivalent ionics in solids, which is crucial for many aspects of battery operation. For instance, multivalent ionic transport was assumed to be correlated with electronic transport; however, we have previously shown that Zn2+ can conduct in electronically insulating ZnPS3 with a low activation energy of 350 meV, albeit with low ionic conductivity. Here, we show that exposure of ZnPS3 to environments with water vapor at different relative humidities results in room-temperature conductivity increases of several orders of magnitude, reaching as high as 1.44 mS cm-1 without decomposition or structural changes. We utilize impedance spectroscopy with ion selective electrodes, ionic transference number measurements, and deposition and stripping of Zn metal, to confirm that both Zn2+ and H+ act as mobile ions. The contribution from Zn2+ to the ionic conductivity in water vapor exposed ZnPS3 is high, representing superionic Zn2+ conduction. The present study demonstrates that it is possible to enhance multivalent ion conduction of electronically insulating solids as a result of water adsorption and highlights the importance of ensuring that increased conductivity in water vapor exposed multivalent ion systems is in fact due to mobile multivalent ions and not solely H+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助昵称采纳,获得10
1秒前
paojiao不辣发布了新的文献求助10
2秒前
陶醉觅夏发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
centlay应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
centlay应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
centlay应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
秋雪瑶应助科研通管家采纳,获得10
4秒前
7秒前
10秒前
memem1发布了新的文献求助10
12秒前
竹筏过海应助深情的鞯采纳,获得100
14秒前
15秒前
陶醉的毛豆完成签到 ,获得积分10
17秒前
谢谢发布了新的文献求助10
17秒前
刘石涛完成签到,获得积分10
18秒前
21秒前
22秒前
上官若男应助单纯的沛白采纳,获得10
22秒前
张小敏发布了新的文献求助10
25秒前
26秒前
蒿标标完成签到,获得积分10
27秒前
吴军霄完成签到,获得积分10
28秒前
濡益完成签到 ,获得积分10
28秒前
30秒前
慕青应助zero采纳,获得10
31秒前
自然的沛凝完成签到,获得积分20
31秒前
32秒前
32秒前
32秒前
我是老大应助谢谢采纳,获得10
34秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Pressing the Fight: Print, Propaganda, and the Cold War 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
The Three Stars Each: The Astrolabes and Related Texts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2470842
求助须知:如何正确求助?哪些是违规求助? 2137574
关于积分的说明 5446708
捐赠科研通 1861598
什么是DOI,文献DOI怎么找? 925820
版权声明 562721
科研通“疑难数据库(出版商)”最低求助积分说明 495244