Identifying risk of stillbirth using machine learning

医学 逻辑回归 随机森林 杠杆(统计) 机器学习 怀孕 预测建模 产科 预测值 人工智能 统计 计算机科学 内科学 数学 遗传学 生物
作者
Tess E.K. Cersonsky,Nina K. Ayala,Halit Pınar,Donald J. Dudley,George R. Saade,Robert M. Silver,Adam K. Lewkowitz
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
卷期号:229 (3): 327.e1-327.e16
标识
DOI:10.1016/j.ajog.2023.06.017
摘要

Previous predictive models using logistic regression for stillbirth do not leverage the advanced and nuanced techniques involved in sophisticated machine learning methods, such as modeling nonlinear relationships between outcomes.This study aimed to create and refine machine learning models for predicting stillbirth using data available before viability (22-24 weeks) and throughout pregnancy, as well as demographic, medical, and prenatal visit data, including ultrasound and fetal genetics.This is a secondary analysis of the Stillbirth Collaborative Research Network, which included data from pregnancies resulting in stillborn and live-born infants delivered at 59 hospitals in 5 diverse regions across the United States from 2006 to 2009. The primary aim was the creation of a model for predicting stillbirth using data available before viability. Secondary aims included refining models with variables available throughout pregnancy and determining variable importance.Among 3000 live births and 982 stillbirths, 101 variables of interest were identified. Of the models incorporating data available before viability, the random forests model had 85.1% accuracy (area under the curve) and high sensitivity (88.6%), specificity (85.3%), positive predictive value (85.3%), and negative predictive value (84.8%). A random forests model using data collected throughout pregnancy resulted in accuracy of 85.0%; this model had 92.2% sensitivity, 77.9% specificity, 84.7% positive predictive value, and 88.3% negative predictive value. Important variables in the previability model included previous stillbirth, minority race, gestational age at the earliest prenatal visit and ultrasound, and second-trimester serum screening.Applying advanced machine learning techniques to a comprehensive database of stillbirths and live births with unique and clinically relevant variables resulted in an algorithm that could accurately identify 85% of pregnancies that would result in stillbirth, before they reached viability. Once validated in representative databases reflective of the US birthing population and then prospectively, these models may provide effective risk stratification and clinical decision-making support to better identify and monitor those at risk of stillbirth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时尚的冰棍儿完成签到 ,获得积分10
2秒前
2秒前
天天快乐应助我不是阿呆采纳,获得10
3秒前
4秒前
cloud完成签到,获得积分10
6秒前
冰冰凉凉彬彬完成签到,获得积分10
6秒前
科研通AI2S应助tdtk采纳,获得10
7秒前
豌豆发布了新的文献求助10
7秒前
affff完成签到 ,获得积分10
7秒前
8秒前
日出发布了新的文献求助10
9秒前
CDH完成签到,获得积分10
10秒前
奥里给完成签到 ,获得积分10
11秒前
核平铀善完成签到 ,获得积分10
11秒前
顾矜应助豌豆采纳,获得10
11秒前
斯文败类应助扒开皮皮采纳,获得10
11秒前
12秒前
慕青应助日出采纳,获得10
12秒前
pengchen完成签到 ,获得积分10
13秒前
科研通AI5应助小豆豆采纳,获得10
13秒前
moonlight发布了新的文献求助10
14秒前
az完成签到,获得积分10
17秒前
霍师傅发布了新的文献求助10
17秒前
酷酷海豚完成签到,获得积分10
17秒前
sh完成签到,获得积分10
18秒前
zhh关闭了zhh文献求助
21秒前
22秒前
calemolet应助爱撒娇的惋清采纳,获得10
23秒前
至拙发布了新的文献求助10
23秒前
26秒前
扒开皮皮发布了新的文献求助10
27秒前
Zhy完成签到,获得积分10
30秒前
小豆豆发布了新的文献求助10
31秒前
XC完成签到,获得积分10
34秒前
机灵曼青完成签到 ,获得积分10
35秒前
现代孤晴完成签到,获得积分10
36秒前
38秒前
916应助扒开皮皮采纳,获得10
38秒前
Owen应助扒开皮皮采纳,获得10
38秒前
情怀应助扒开皮皮采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339