Identifying risk of stillbirth using machine learning

医学 逻辑回归 随机森林 杠杆(统计) 机器学习 怀孕 预测建模 产科 预测值 人工智能 统计 计算机科学 内科学 数学 遗传学 生物
作者
Tess E.K. Cersonsky,Nina K. Ayala,Halit Pınar,Donald J. Dudley,George R. Saade,Robert M. Silver,Adam K. Lewkowitz
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier BV]
卷期号:229 (3): 327.e1-327.e16 被引量:9
标识
DOI:10.1016/j.ajog.2023.06.017
摘要

Previous predictive models using logistic regression for stillbirth do not leverage the advanced and nuanced techniques involved in sophisticated machine learning methods, such as modeling nonlinear relationships between outcomes.This study aimed to create and refine machine learning models for predicting stillbirth using data available before viability (22-24 weeks) and throughout pregnancy, as well as demographic, medical, and prenatal visit data, including ultrasound and fetal genetics.This is a secondary analysis of the Stillbirth Collaborative Research Network, which included data from pregnancies resulting in stillborn and live-born infants delivered at 59 hospitals in 5 diverse regions across the United States from 2006 to 2009. The primary aim was the creation of a model for predicting stillbirth using data available before viability. Secondary aims included refining models with variables available throughout pregnancy and determining variable importance.Among 3000 live births and 982 stillbirths, 101 variables of interest were identified. Of the models incorporating data available before viability, the random forests model had 85.1% accuracy (area under the curve) and high sensitivity (88.6%), specificity (85.3%), positive predictive value (85.3%), and negative predictive value (84.8%). A random forests model using data collected throughout pregnancy resulted in accuracy of 85.0%; this model had 92.2% sensitivity, 77.9% specificity, 84.7% positive predictive value, and 88.3% negative predictive value. Important variables in the previability model included previous stillbirth, minority race, gestational age at the earliest prenatal visit and ultrasound, and second-trimester serum screening.Applying advanced machine learning techniques to a comprehensive database of stillbirths and live births with unique and clinically relevant variables resulted in an algorithm that could accurately identify 85% of pregnancies that would result in stillbirth, before they reached viability. Once validated in representative databases reflective of the US birthing population and then prospectively, these models may provide effective risk stratification and clinical decision-making support to better identify and monitor those at risk of stillbirth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助苽峰采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
乐乐应助staev采纳,获得10
3秒前
听书人发布了新的文献求助10
3秒前
摇一摇完成签到,获得积分10
4秒前
大白发布了新的文献求助10
4秒前
4秒前
4秒前
dione给dione的求助进行了留言
4秒前
yy完成签到,获得积分10
5秒前
6秒前
感动水杯完成签到 ,获得积分10
6秒前
浮游应助星辰亦会累采纳,获得10
7秒前
7秒前
Akim应助Karen_Liu采纳,获得10
7秒前
Pretrial完成签到 ,获得积分10
8秒前
9秒前
han发布了新的文献求助10
9秒前
哈牛柚子鹿完成签到,获得积分10
9秒前
jianwuzhou发布了新的文献求助10
9秒前
10秒前
10秒前
Logan184完成签到 ,获得积分10
10秒前
jwj发布了新的文献求助10
11秒前
tianguan发布了新的文献求助10
12秒前
从容道罡完成签到,获得积分10
12秒前
依依发布了新的文献求助10
13秒前
14秒前
生尽证提发布了新的文献求助10
14秒前
14秒前
Yuki发布了新的文献求助10
15秒前
逐上春来完成签到 ,获得积分10
15秒前
15秒前
16秒前
浮游应助克姑美采纳,获得10
16秒前
17秒前
林距离完成签到 ,获得积分10
17秒前
幽默胜完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011950
求助须知:如何正确求助?哪些是违规求助? 4253264
关于积分的说明 13253336
捐赠科研通 4055969
什么是DOI,文献DOI怎么找? 2218515
邀请新用户注册赠送积分活动 1228110
关于科研通互助平台的介绍 1150405