Examining the Impact of Generative AI on Users’ Voluntary Knowledge Contribution: Evidence from A Natural Experiment on Stack Overflow

自然实验 生成语法 自然(考古学) 堆栈(抽象数据类型) 人事变更率 计算机科学 认知心理学 心理学 工程类 人工智能 经济 历史 管理 数学 统计 考古 程序设计语言
作者
Guohou Shan,Liangfei Qiu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:10
标识
DOI:10.2139/ssrn.4462976
摘要

Voluntary knowledge contribution on online platforms is significant for users, platforms, and firms. The rapid advancements in generative Artificial Intelligence (AI) techniques have enabled the automatic generation of knowledge on question and answer (Q&A) platforms. However, the impact of generative AI on users’ voluntary knowledge contribution remains an empirical question. On the one hand, users may learn from generative AI to improve their answers, providing organized and logical responses. On the other hand, generative AI may produce fabricated answers, and the increased speed of answering with AI assistance may impose additional cognitive burdens on humans, potentially reducing their overall contribution. Our study examines the impact of generative AI, specifically ChatGPT, on users’ voluntary knowledge contribution on Stack Overflow, one of the largest Q&A platforms. Leveraging a natural experiment, we employ the difference-in-differences (DID) estimation to investigate the effects of generative AI on the quantity and quality of users’ knowledge contribution, measured by the number of answers generated per day, answer length, readability, and received scores. Our findings reveal that using generative AI leads to an increase in the number of answers generated by users. However, these answers tend to be shorter in length and easier to read. This suggests that users are learning from generative AI and answering questions more quickly and concisely, but the cognitive burden associated with AI usage results in shorter and more digestible answers. We also explore the moderating effects of user tenure and question upvote ratio on the impact of generative AI to gain insights into underlying mechanisms. The implications of this study are both theoretical and practical. Theoretically, we contribute to the Information Systems (IS) literature by examining the impact of generative AI on users’ voluntary knowledge contribution in the context of Q&A platforms. Practically, our findings provide knowledge platform owners and managers with a better understanding of how generative AI influences users’ knowledge contribution behavior. This understanding can guide decision-making and strategy development regarding the integration of generative AI on their platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小枫叶轻轻而过完成签到,获得积分10
1秒前
锦绣人间完成签到,获得积分10
1秒前
醒醒发布了新的文献求助10
2秒前
Asiprinal发布了新的文献求助10
2秒前
illusia发布了新的文献求助10
3秒前
3秒前
3秒前
lll发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI6应助elizabeth339采纳,获得10
6秒前
缓慢的开山完成签到 ,获得积分10
6秒前
6秒前
syfsyfsyf完成签到,获得积分20
7秒前
syfsyfsyf发布了新的文献求助10
9秒前
浪迹天涯完成签到 ,获得积分10
11秒前
现代的bb发布了新的文献求助10
12秒前
醒醒完成签到,获得积分10
12秒前
科研通AI6应助Shirley采纳,获得10
14秒前
酷酷一兰发布了新的文献求助10
15秒前
15秒前
czzlancer完成签到,获得积分10
15秒前
15秒前
Owen应助长卿采纳,获得10
16秒前
16秒前
科目三应助海绵宝宝采纳,获得10
16秒前
17秒前
lxy2002完成签到,获得积分10
17秒前
吉吉国王的跟班完成签到 ,获得积分10
18秒前
19秒前
xixihaha发布了新的文献求助10
19秒前
Maxx发布了新的文献求助10
19秒前
木光发布了新的文献求助10
21秒前
22秒前
Scor发布了新的文献求助10
22秒前
illusia完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
nnnd77发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702554
求助须知:如何正确求助?哪些是违规求助? 4070364
关于积分的说明 12585884
捐赠科研通 3770660
什么是DOI,文献DOI怎么找? 2082530
邀请新用户注册赠送积分活动 1109929
科研通“疑难数据库(出版商)”最低求助积分说明 987988