Learning to Estimate Heart Rate From Accelerometer and User's Demographics During Physical Exercises

人口统计学的 加速度计 计算机科学 物理医学与康复 物理疗法 人工智能 医学 人口学 操作系统 社会学
作者
André G. C. Pacheco,Frank C. Cabello,Paula G. Rodrigues,Desiree C. Miraldo,Vanessa B. O. Fioravanti,Renata de Lima,Paula R. Pinto,Adriana M. O. Fonoff,Otávio A. B. Penatti
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (9): 5092-5102 被引量:2
标识
DOI:10.1109/jbhi.2023.3251742
摘要

Getting prompt insights about health and well-being in a non-invasive way is one of the most popular features available on wearable devices. Among all vital signs available, heart rate (HR) monitoring is one of the most important since other measurements are based on it. Real-time HR estimation in wearables mostly relies on photoplethysmography (PPG), which is a fair technique to handle such a task. However, PPG is vulnerable to motion artifacts (MA). As a consequence, the HR estimated from PPG signals is strongly affected during physical exercises. Different approaches have been proposed to deal with this problem, however, they struggle to handle exercises with strong movements, such as a running session. In this paper, we present a new method for HR estimation in wearables that uses an accelerometer signal and user demographics to support the HR prediction when the PPG signal is affected by motion artifacts. This algorithm requires a tiny memory allocation and allows on-device personalization since the model parameters are finetuned in real time during workout executions. Also, the model may predict HR for a few minutes without using a PPG, which represents a useful contribution to an HR estimation pipeline. We evaluate our model on five different exercise datasets – performed on treadmills and in outdoor environments – and the results show that our method can improve the coverage of a PPG-based HR estimator while keeping a similar error performance, which is particularly useful to improve user experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ggg完成签到,获得积分10
4秒前
大妙妙完成签到 ,获得积分10
6秒前
傲慢葫芦发布了新的文献求助10
7秒前
李健应助坦率的文龙采纳,获得10
9秒前
哪位完成签到,获得积分20
9秒前
10秒前
10秒前
13秒前
13秒前
慕青应助徐doc采纳,获得10
14秒前
山大琦子发布了新的文献求助10
14秒前
15秒前
15秒前
桐桐应助ltx采纳,获得10
15秒前
16秒前
16秒前
傲慢葫芦发布了新的文献求助10
17秒前
17秒前
科研小飞猪完成签到,获得积分20
19秒前
脑洞疼应助优美的剑愁采纳,获得10
19秒前
时尚俊驰发布了新的文献求助10
19秒前
默言发布了新的文献求助10
20秒前
小壳儿发布了新的文献求助10
20秒前
21秒前
小蘑菇应助小六采纳,获得10
21秒前
研友_nv4Bx8完成签到,获得积分10
22秒前
qiongqiong发布了新的文献求助10
22秒前
24秒前
24秒前
24秒前
26秒前
27秒前
27秒前
枫叶发布了新的文献求助10
27秒前
科研通AI5应助qw采纳,获得10
28秒前
ding应助szh采纳,获得10
30秒前
blusky发布了新的文献求助10
30秒前
31秒前
隐形曼青应助时尚俊驰采纳,获得10
31秒前
科研通AI5应助fancy采纳,获得10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181966
求助须知:如何正确求助?哪些是违规求助? 3718115
关于积分的说明 11720155
捐赠科研通 3397856
什么是DOI,文献DOI怎么找? 1864285
邀请新用户注册赠送积分活动 922161
科研通“疑难数据库(出版商)”最低求助积分说明 833870