亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PYOLO-PCF: A Lightweight and Context-Aware Multi-Scale Framework for Printed Packaging Defect Detection

作者
Tong Li,Zhen Li
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:40 (02)
标识
DOI:10.1142/s0218001425590220
摘要

Printed packaging defect detection in industrial production is challenged by complex background textures, small defect sizes, and the need for real-time processing on resource-limited devices. To address these issues, we propose PYOLO-PCF (printing YOLO with package-context fusion), a lightweight and context-aware multi-scale detection framework tailored for heterogeneous printed packaging environments. The backbone integrates RepGhost convolution with GSConv to achieve efficient fine-grained feature extraction, while the neck incorporates dual-channel spatial pyramid fusion (DCSPF) to separately process low-frequency structural and high-frequency texture information for robust feature fusion. A hybrid attention mechanism, combining triplet attention and polarized self-attention (PSA), enhances defect saliency while suppressing background noise. Furthermore, CARAFE[Formula: see text] upsampling with SimAM attention improves geometric consistency in small-defect reconstruction, and the detection head employs a hybrid task cascade (HTC) structure optimized with scalable intersection over union (SIoU) loss for precise localization. Extensive experiments on the newly constructed P-PackDefect-2025 dataset, covering three industrial printing processes (silk screen, flexographic, and relief printing), demonstrate that PYOLO-PCF achieves an mAP@0.5 of 0.812 and a defect recall rate (DRR) of 95.6%, outperforming state-of-the-art lightweight detectors while maintaining a real-time inference speed of 46 FPS (frames per second) on an NVIDIA Jetson Xavier NX. Ablation studies confirm that each proposed component contributes to accuracy gains, with the full model offering a 3–5% mAP improvement over strong baselines. The proposed PYOLO-PCF provides an effective balance between accuracy, speed, and model complexity, making it well-suited for deployment in industrial quality inspection systems where high precision and real-time operation are critical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助yyy采纳,获得10
6秒前
果小美G完成签到,获得积分20
9秒前
名子劝学完成签到 ,获得积分10
12秒前
热心的代桃完成签到,获得积分10
13秒前
xiaoz发布了新的文献求助10
16秒前
mark707完成签到,获得积分10
26秒前
27秒前
29秒前
32秒前
佘炭炭发布了新的文献求助10
32秒前
34秒前
果小美G发布了新的文献求助10
39秒前
量子星尘发布了新的文献求助10
40秒前
土豆你个西红柿完成签到 ,获得积分10
49秒前
科妍通AI2_1完成签到,获得积分10
49秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
龙猫抱枕完成签到,获得积分10
1分钟前
1分钟前
1分钟前
最好完成签到 ,获得积分10
1分钟前
1分钟前
耳东发布了新的文献求助10
1分钟前
善学以致用应助shinn采纳,获得10
1分钟前
简让完成签到 ,获得积分10
1分钟前
1分钟前
渔秋一发布了新的文献求助10
1分钟前
科研通AI2S应助文化沙漠采纳,获得10
1分钟前
危机的夏兰完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772407
求助须知:如何正确求助?哪些是违规求助? 5598302
关于积分的说明 15429615
捐赠科研通 4905409
什么是DOI,文献DOI怎么找? 2639351
邀请新用户注册赠送积分活动 1587305
关于科研通互助平台的介绍 1542154