A physics-informed data-driven framework for structural health monitoring of thermal fatigue in concrete composites

作者
Ali Nouri,Alireza Zamani,Vahab Toufigh
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217251375838
摘要

Thermal fatigue in concrete composites critically compromises infrastructure performance and longevity. While data-driven methods have pioneered structural health monitoring (SHM), conventional approaches suffer from high training costs, overfitting risk, poor interpretability, overlooking physical principles, and limited generalizability. This study presents an innovative physics-informed white-box framework integrated with ultrasonic signal features for diagnosing and prognosing thermal fatigue in concrete composites. A novel physics-informed symbolic regression (SR) is developed as an interpretable platform according to underlying physical laws with low training costs. In parallel, a plain SR is established as a baseline for comparison. An evolutionary algorithm with a multi-objective fitness function addresses regression problems and reduces computational costs. High-performance concrete is used to generate training and testing data through a comprehensive experimental fatigue program. A hierarchical data structure enables systematic evaluation of the interpolation property. As a result, ultrasonic signal features robustly predict the key mechanical parameters. Additionally, the paste volume fraction demonstrates a pivotal role in damage modeling. Out-of-distribution data assess the extrapolation property and potential for overfitting. In particular, the physics-informed SR captures influential degradation mechanisms by highlighting the significance of paste integrity and thermal expansion mismatch. Bayesian regression extends the learned physical mechanism to other concrete materials and thermal patterns. The results outperform standards and previous studies in terms of strength and stiffness predictions. This work introduces a promising SHM system that supports field deployment, pre-crack estimation, real-time monitoring, and transparent decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的手套完成签到 ,获得积分10
刚刚
yhyhyhyh完成签到,获得积分10
1秒前
文静灵阳完成签到 ,获得积分10
1秒前
小young完成签到 ,获得积分10
4秒前
怎么会睡不醒完成签到 ,获得积分10
5秒前
6秒前
谦让汝燕完成签到,获得积分10
8秒前
soumei完成签到 ,获得积分10
9秒前
Able完成签到,获得积分10
11秒前
爱吃芝士完成签到,获得积分10
13秒前
南风完成签到 ,获得积分10
18秒前
悟川完成签到,获得积分10
20秒前
安xx完成签到 ,获得积分10
20秒前
小猫完成签到 ,获得积分10
20秒前
哭泣青烟完成签到 ,获得积分10
20秒前
中工完成签到 ,获得积分10
30秒前
孙老师完成签到 ,获得积分10
31秒前
ncuwzq完成签到,获得积分10
31秒前
顽固分子完成签到 ,获得积分10
31秒前
眯眯眼的谷冬完成签到 ,获得积分10
34秒前
小狗睡神完成签到 ,获得积分10
41秒前
非鱼鱼完成签到 ,获得积分10
42秒前
缥缈的觅风完成签到 ,获得积分10
42秒前
wang完成签到,获得积分10
43秒前
蓝桉完成签到 ,获得积分10
53秒前
尼可刹米洛贝林完成签到,获得积分10
54秒前
沐沐汐完成签到 ,获得积分10
55秒前
56秒前
59秒前
小果完成签到 ,获得积分10
1分钟前
苏su完成签到 ,获得积分10
1分钟前
生生完成签到,获得积分10
1分钟前
翁雁丝完成签到 ,获得积分10
1分钟前
山水之乐发布了新的文献求助10
1分钟前
明朗完成签到 ,获得积分0
1分钟前
完美世界应助hahaha采纳,获得10
1分钟前
chen完成签到,获得积分10
1分钟前
小杭76应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
March应助科研通管家采纳,获得20
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212353
求助须知:如何正确求助?哪些是违规求助? 4388551
关于积分的说明 13664063
捐赠科研通 4249022
什么是DOI,文献DOI怎么找? 2331365
邀请新用户注册赠送积分活动 1329024
关于科研通互助平台的介绍 1282440