亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning approach uncovers hemodynamic-driven phenotypes in cardiac surgery by clustering multimodal, high-dimensional perioperative data

作者
Siyu Kong,Ning Xiao,Jie Sun,Ke Ding,Jing Ru Hu,Xiao Zhou,Yali Ge,Xuesheng Liu,Fan Yang,Zhimin Zhang,Lihai Chen,Hongwei Shi,Jifang Zhou
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000004536
摘要

Background: A critical limitation of current risk assessment in cardiac surgery is its reliance on static preoperative models, which fail to account for dynamic intraoperative physiological changes. This limitation may lead to the oversight of critical factors that can greatly influence patient outcomes. Thus, identifying clinically meaningful phenotypes by mining dynamic intraoperative features and integrating them with multi-dimensional data is crucial for understanding phenotypic heterogeneity and enabling personalized perioperative care. Methods: This multicenter, retrospective study included adult patients undergoing cardiac surgery with cardiopulmonary bypass at three tertiary hospitals in eastern China (2013-2024) and an external cohort from an internationally public perioperative database (2011-2020). A high-dimensional dataset was constructed by integrating clinical data with high-resolution intraoperative vital sign time series, resulting in a comprehensive feature set composed of 1,006 key parameters. An unsupervised agglomerative hierarchical clustering was used to calculate distinct phenotypes. Key clinical features and outcomes were compared across phenotypes, with the reproducibility and generalizability of these identified phenotypes validated in three independent external datasets. Results: From 10,847 eligible surgeries, five distinct clinical phenotypes were identified. Phenotype A (Stable Hemodynamics) was characterized by intraoperative hemodynamics closest to average cohort values and minimal comorbidities, leading to favorable outcomes. Phenotype B (Heart Rate Instability) uniquely demonstrated a higher chronic comorbidity burden and high intraoperative heart rate variability, while other hemodynamic profiles remained relatively stable. Phenotype C (High Blood Pressure), comprising older patients with extensive coronary artery disease, was characterized by a low heart rate while blood pressure was maintained at an elevated level. Phenotype D (Elevated Central Venous Pressure) was distinguished by the most rapid early-onset organ dysfunction (0-12 h postoperative) and the longest ICU stays. Phenotype E (Severe Hemodynamic Fluctuations), marked by the most profound intraoperative physiological deviations, incurred the highest incidences of both acute kidney injury (66.9%) and acute liver failure (38.8%), and the greatest overall mortality (11.4%). Validation across internal and external cohorts confirmed the reproducibility and generalizability of these distinct phenotypes. Conclusion: Through a data-driven phenotypic analysis utilizing machine learning, various subgroups were identified among heterogeneous surgical patients, each displaying distinct characteristics linked to adverse outcomes. The integration of multi-dimensional intraoperative vital signs with perioperative data may support the development of more precise, individualized risk stratification and future perioperative management strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浪漫反派完成签到,获得积分10
9秒前
moxiang发布了新的文献求助10
10秒前
14秒前
sansronds完成签到,获得积分10
16秒前
sansronds发布了新的文献求助10
20秒前
CodeCraft应助moxiang采纳,获得10
23秒前
28秒前
34秒前
开放煎饼完成签到,获得积分10
1分钟前
willlee完成签到 ,获得积分10
1分钟前
1分钟前
开放煎饼发布了新的文献求助10
1分钟前
沈惠映发布了新的文献求助30
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
morena应助科研通管家采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
谨慎盼山发布了新的文献求助10
1分钟前
1分钟前
谨慎盼山完成签到,获得积分10
1分钟前
大海发布了新的文献求助10
1分钟前
大海完成签到,获得积分10
1分钟前
1分钟前
郝誉发布了新的文献求助10
1分钟前
吾日三省吾身完成签到 ,获得积分10
2分钟前
彭于晏应助郝誉采纳,获得10
2分钟前
斯文败类应助郝誉采纳,获得10
2分钟前
科研通AI2S应助郝誉采纳,获得10
2分钟前
丘比特应助郝誉采纳,获得10
2分钟前
酷波er应助郝誉采纳,获得10
2分钟前
852应助郝誉采纳,获得10
2分钟前
Lucas应助郝誉采纳,获得10
2分钟前
小蘑菇应助郝誉采纳,获得10
2分钟前
2分钟前
2分钟前
ccc完成签到 ,获得积分10
2分钟前
3分钟前
想听水星记完成签到,获得积分10
3分钟前
serein发布了新的文献求助10
3分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464281
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439707