Adaptive Fault Components Extraction by Using an Optimized Weights Spectrum Based Index for Machinery Fault Diagnosis

峰度 希尔伯特-黄变换 断层(地质) 特征提取 计算机科学 噪音(视频) 模式识别(心理学) 算法 可靠性工程 工程类 人工智能 统计 数学 白噪声 电信 地震学 图像(数学) 地质学
作者
Bingchang Hou,Dong Wang,Zhike Peng,Kwok‐Leung Tsui
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:71 (1): 985-995 被引量:9
标识
DOI:10.1109/tie.2023.3243282
摘要

Machinery condition monitoring and fault diagnosis has attracted much attention because it is beneficial to reducing maintenance costs and improving industrial profits. Adaptive fault components extraction (AFCE) is the most crucial step for machinery fault diagnosis, and its core is statistical indices. Existing statistical indices including kurtosis and correlated kurtosis are empirical statistical indices (ESIs), and they cannot exactly quantify fault-related information in signals and distinguish fault components from interferential components. Thus, the ESIs might be easily affected by random impulsive noise, low frequency components, etc. To solve this problem, a new statistical index named optimized weights spectrum based index (OWSI) is proposed in this paper. The OWSI satisfies two good properties to guarantee exact quantification of fault components and effectively distinguish interferential components. Moreover, a new OWSI-based methodology is proposed to realize AFCE, and it can be implemented with signal decomposition algorithms such as variational mode decomposition without needing careful parameters tuning. Bearing and gear real-world fault signals are studied to verify the effectiveness of the proposed methodology. Results show that the proposed methodology is superior to ESI-based methods including classic fast kurtogram and newly developed feature mode decomposition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕子默完成签到,获得积分10
2秒前
树叶有专攻完成签到,获得积分10
2秒前
Wency完成签到,获得积分10
3秒前
羊鱼发布了新的文献求助50
5秒前
Siriya完成签到,获得积分10
6秒前
7秒前
hbj完成签到,获得积分10
7秒前
zino完成签到,获得积分10
8秒前
YCI完成签到 ,获得积分20
9秒前
随遇而安应助Gates采纳,获得20
11秒前
怕孤单的听寒完成签到,获得积分10
11秒前
15秒前
研团子完成签到,获得积分10
15秒前
慕青应助科研通管家采纳,获得10
16秒前
帮主哥哥应助科研通管家采纳,获得20
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得100
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
许甜甜鸭应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
二三应助科研通管家采纳,获得10
16秒前
温暖小松鼠完成签到 ,获得积分10
16秒前
学术大牛完成签到,获得积分10
21秒前
25秒前
25秒前
YCI发布了新的文献求助10
26秒前
27秒前
27秒前
leonork完成签到,获得积分10
27秒前
踏实的无敌完成签到,获得积分10
27秒前
Hello应助学术大牛采纳,获得10
28秒前
28秒前
勿明完成签到,获得积分10
29秒前
淡然黑猫发布了新的文献求助10
29秒前
XRT完成签到,获得积分20
29秒前
Awei发布了新的文献求助10
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123