亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 数据挖掘
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:232: 107434-107434 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助cassie采纳,获得10
3秒前
21秒前
施芳铭发布了新的文献求助10
25秒前
大个应助Zidawhy采纳,获得10
33秒前
Zidawhy完成签到,获得积分10
39秒前
施芳铭完成签到,获得积分10
40秒前
wanci应助JoeyJin采纳,获得10
40秒前
41秒前
Zidawhy发布了新的文献求助10
47秒前
50秒前
52秒前
叶逐风发布了新的文献求助10
55秒前
MchemG完成签到,获得积分0
56秒前
57秒前
叶逐风完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
珀拉瑞丝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
cassie发布了新的文献求助10
1分钟前
IShowSpeed完成签到,获得积分10
1分钟前
嘻嘻完成签到 ,获得积分10
2分钟前
Said1223完成签到,获得积分20
2分钟前
无奈的萍完成签到,获得积分10
2分钟前
JoeyJin完成签到,获得积分10
2分钟前
隔壁老王发布了新的文献求助10
2分钟前
krajicek完成签到,获得积分10
3分钟前
null完成签到,获得积分0
3分钟前
3分钟前
sasasi发布了新的文献求助10
3分钟前
Hello应助隔壁老王采纳,获得10
3分钟前
zh完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356840
求助须知:如何正确求助?哪些是违规求助? 4488537
关于积分的说明 13972306
捐赠科研通 4389526
什么是DOI,文献DOI怎么找? 2411633
邀请新用户注册赠送积分活动 1404132
关于科研通互助平台的介绍 1378213