DiatomNet v1.0: A novel approach for automatic diatom testing for drowning diagnosis in forensically biomedical application

计算机科学 Python(编程语言) 图形用户界面 卷积神经网络 人工智能 软件 F1得分 硅藻 召回 机器学习 数据挖掘 操作系统 地质学 语言学 海洋学 哲学
作者
Ji Zhang,Duarte Nuno Vieira,Qi Cheng,Yongzheng Zhu,Kaifei Deng,Jianhua Zhang,Zhiqiang Qin,Qiran Sun,Tianye Zhang,Kaijun Ma,Xiaofeng Zhang,Ping Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:232: 107434-107434
标识
DOI:10.1016/j.cmpb.2023.107434
摘要

Diatom testing is supportive for drowning diagnosis in forensic medicine. However, it is very time-consuming and labor-intensive for technicians to identify microscopically a handful of diatoms in sample smears, especially under complex observable backgrounds. Recently, we successfully developed a software, named DiatomNet v1.0 intended to automatically identify diatom frustules in a whole slide under a clear background. Here, we introduced this new software and performed a validation study to elucidate how DiatomNet v1.0 improved its performance with the influence of visible impurities.DiatomNet v1.0 has an intuitive, user-friendly and easy-to-learn graphical user interface (GUI) built in the Drupal and its core architecture for slide analysis including a convolutional neural network (CNN) is written in Python language. The build-in CNN model was evaluated for diatom identification under very complex observable backgrounds with mixtures of common impurities, including carbon pigments and sand sediments. Compared to the original model, the enhanced model following optimization with limited new datasets was evaluated systematically by independent testing and random control trials (RCTs).In independent testing, the original DiatomNet v1.0 was moderately affected, especially when higher densities of impurities existed, and achieved a low recall of 0.817 and F1 score of 0.858 but good precision of 0.905. Following transfer learning with limited new datasets, the enhanced version had better results, with recall and F1 score values of 0.968. A comparative study on real slides showed that the upgraded DiatomNet v1.0 obtained F1 scores of 0.86 and 0.84 for carbon pigment and sand sediment, respectively, slightly worse than manual identification (carbon pigment: 0.91; sand sediment: 0.86), but much less time was needed.The study verified that forensic diatom testing with aid of DiatomNet v1.0 is much more efficient than traditionally manual identification even under complex observable backgrounds. In terms of forensic diatom testing, we proposed a suggested standard on build-in model optimization and evaluation to strengthen the software's generalization in potentially complex conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助钱念波采纳,获得20
刚刚
HongqiZhang完成签到 ,获得积分10
1秒前
材化小将军完成签到,获得积分10
1秒前
郭辉完成签到,获得积分10
4秒前
翻斗花园牛爷爷完成签到 ,获得积分10
4秒前
BeenThrough完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
李健应助管恩杰采纳,获得10
8秒前
blush完成签到 ,获得积分10
9秒前
cdercder应助郭辉采纳,获得10
10秒前
哇哇哇完成签到 ,获得积分10
11秒前
恋雅颖月发布了新的文献求助10
11秒前
二两白茶发布了新的文献求助10
11秒前
15秒前
17秒前
二两白茶完成签到,获得积分10
17秒前
乐乐应助peikyang采纳,获得10
18秒前
1234发布了新的文献求助10
19秒前
hhp发布了新的文献求助10
21秒前
光亮的太阳完成签到,获得积分10
22秒前
ming完成签到,获得积分10
24秒前
所所应助1234采纳,获得10
28秒前
29秒前
33秒前
SciGPT应助Enri采纳,获得10
34秒前
夜安发布了新的文献求助10
36秒前
36秒前
11完成签到 ,获得积分10
37秒前
哈哈哈完成签到 ,获得积分10
39秒前
酷波er应助水若冰寒采纳,获得10
40秒前
深情安青应助单薄的南蕾采纳,获得10
40秒前
略略略完成签到 ,获得积分10
41秒前
钱念波发布了新的文献求助20
41秒前
Sid完成签到,获得积分10
44秒前
wgglegg发布了新的文献求助10
45秒前
47秒前
peikyang完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783129
求助须知:如何正确求助?哪些是违规求助? 3328480
关于积分的说明 10236624
捐赠科研通 3043565
什么是DOI,文献DOI怎么找? 1670577
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119