The influence of collaborative innovation network characteristics on firm innovation performance from the perspective of innovation ecosystem

知识管理 知识转移 中心性 业务 知识共享 计算机科学 数学 组合数学
作者
Fenglian Wang,Qing Su,Zongming Zhang
出处
期刊:Kybernetes [Emerald Publishing Limited]
被引量:24
标识
DOI:10.1108/k-04-2022-0553
摘要

Purpose This study is aimed at making an inspection of the effects of collaborative innovation network characteristics on firm innovation performance, and the intermediary roles of knowledge transfer efficiency is taken into account. Design/methodology/approach This study used a convenient sampling method to obtain population and samples. Using data obtained by publishing online and paper questionnaires, and using on-site interviews in Anhui Province in the Yangtze River Delta region of China, descriptive analysis, regression analysis and correlation analysis are utilized to study the direct influence of collaborative innovation network characteristics on knowledge transfer efficiency as well as firm innovation performance, and the intermediary roles of knowledge transfer efficiency on firm innovation performance, respectively. In this study, 3,000 questionnaires were distributed to the employees of enterprises engaged in research and development (R&D) activities, of which 2,560 were valid. With the help of SPSS24.0 software, the reliability and validity of the questionnaire was analyzed. Findings The results are indicative of that network centrality and relationship strength positively affect knowledge transfer efficiency and firm innovation performance. Nevertheless, network scale has no significant correlation with knowledge transfer efficiency and enterprise innovation performance. In addition, knowledge transfer efficiency is an intermediary between collaborative innovation network characteristics and enterprise innovation performance, and positively affects enterprise innovation performance, which demonstrated that managers should take advantage of collaborative innovation network characteristics to elevate knowledge transfer efficiency because well-realized transferals of knowledge can help accelerate the coordination of resources in knowledge, and finally bring about the advancement of firm's innovation abilities and performance. Research limitations/implications There are few previous studies that fully examined the relationships among collaborative innovation network characteristics, knowledge transfer efficiency and firm innovation performance. This paper developed previous researches on the relationships between collaborative innovation network characteristics, knowledge transfer efficiency and firm innovation performance. The mediation of knowledge transfer efficiency on the relationship between collaborative innovation network characteristics and firm innovation performance is analyzed. Further, studies on collaborative innovation network characteristics using data obtained from employees engaged in R&D activities are very limited in the literature. On account of that, the findings in this study may make sense to the innovation ability of innovative enterprise and expand the literature in the field of enterprise strategic management and knowledge management. Practical implications This analysis shows that collaborative innovation network characteristics have both positive and negative effects on firm innovation performance. Therefore, business managers should pay attention to their position in the collaborative innovation network and maintain the relationship strength with other innovation subjects. Special consideration should be given to the knowledge transfer of innovative enterprises, so as to improve firm innovation performance practically. Originality/value The study may provide additional understandings for researchers, government managers, universities and enterprises with regard to strategic management from the visual angle of innovation ecosystems. It is instrumental in the exploration of the mechanisms enabling firm innovation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嗯哼123发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
啊哈发布了新的文献求助10
2秒前
2秒前
Konoha完成签到,获得积分10
2秒前
慕青应助冬猫采纳,获得10
3秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
Daisy发布了新的文献求助10
4秒前
lriye发布了新的文献求助10
4秒前
suan发布了新的文献求助10
5秒前
铭天完成签到,获得积分10
6秒前
Arusa发布了新的文献求助10
6秒前
7秒前
cc发布了新的文献求助10
7秒前
lmn发布了新的文献求助10
8秒前
wanci应助刚睡醒采纳,获得10
8秒前
9秒前
zsj3787发布了新的文献求助10
9秒前
9秒前
10秒前
veronica完成签到,获得积分10
10秒前
xyy发布了新的文献求助10
11秒前
L_online完成签到 ,获得积分10
12秒前
veronica发布了新的文献求助10
13秒前
121314wld发布了新的文献求助10
13秒前
澍澍完成签到,获得积分10
14秒前
15秒前
K2L发布了新的文献求助10
17秒前
18秒前
121314wld完成签到,获得积分10
18秒前
19秒前
MP_zhang完成签到,获得积分10
19秒前
20秒前
elain完成签到 ,获得积分10
20秒前
bkagyin应助7890733采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331