Abstract WP16: Automated Vessel Identification In The Circle Of Willis Using Deep Learning Models To Assist AI Based Lesion Detection In Cerebral Vasculature

人工智能 医学 威利斯圆 深度学习 脑动脉 计算机科学 血管造影 分割 模式识别(心理学) 计算机视觉 放射科
作者
Aichi Chien,Žiga Špiclin,Žiga Bizjak
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:54 (Suppl_1)
标识
DOI:10.1161/str.54.suppl_1.wp16
摘要

Introduction: Vascular diseases are among the top causes of death in the world. Automated approaches which allow comparison of vasculature enable both large population studies of vasculature and assist objective diagnosis of vascular disease. Accurate and robust methods for vessel labeling of angiography are an important step to automatically localize lesions or other features of interest. Hypothesis: using a deep learning approach, a model can be developed to identify cerebral arteries. Methods: We used 152 cerebral TOF-MRA angiograms from three publicly available datasets and automatically segmented vessels using a pre-trained nnU-net model. With the segmented vessels, we manually created reference labels for different cerebral arteries using 3DSlicer. After extracting vessel centerlines from the segmentations using VesselVio, we then associated each centerline point with the reference labels to assign individual arterial segments. Finally, in an ablation-type study, several PointNet++ point cloud models were trained and evaluated, using the centerline coordinates, local vessel radius and/or centerline point connectivity information as inputs. Results: The model trained only on centerline coordinates resulted in a high true positive rate (TPR) of 0.92, while models trained with additional features resulted in significantly higher (p<0.05) TPR of 0.95. Different PointNet++ models favored improved labeling of certain arteries, while the internal carotid artery, and posterior communicating artery were consistently the most and least accurately labeled arteries, respectively. Conclusion: We developed a complete pipeline utilizing a deep learning PointNet++ for automatic cerebral vessel identification that labels vessels based on automatically extracted centerlines. Results show that utilizing vessel radius as an additional feature significantly improved cerebral vasculature labeling. The overall TPR of 0.95 shows that our model can be used for fast and reliable artery labeling of cerebral MRA images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助敏感初露采纳,获得10
1秒前
乐正三问完成签到,获得积分10
1秒前
Kang发布了新的文献求助20
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
5秒前
小星星完成签到,获得积分20
5秒前
14完成签到,获得积分10
6秒前
Jonas发布了新的文献求助10
6秒前
隐形曼青应助lzq采纳,获得10
7秒前
cheunsor发布了新的文献求助10
7秒前
14发布了新的文献求助10
9秒前
dreamer完成签到 ,获得积分10
9秒前
落后的静枫完成签到 ,获得积分10
9秒前
9秒前
无敌小汐发布了新的文献求助10
10秒前
高贵的花卷关注了科研通微信公众号
10秒前
10秒前
11秒前
kmkz发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
蝃蝀完成签到,获得积分10
15秒前
所所应助优美采梦采纳,获得10
15秒前
16秒前
yimi发布了新的文献求助10
16秒前
woodword完成签到,获得积分10
16秒前
lyp完成签到,获得积分10
17秒前
17秒前
无敌小汐完成签到,获得积分10
18秒前
18秒前
CipherSage应助kmkz采纳,获得10
18秒前
刘蒋文发布了新的文献求助30
18秒前
可cabd完成签到,获得积分10
19秒前
lzq发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693