已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Agricultural weed identification in images and videos by integrating optimized deep learning architecture on an edge computing technology

卷积神经网络 人工智能 杂草 航空影像 计算机科学 特征(语言学) 鉴定(生物学) 模式识别(心理学) 精准农业 深度学习 GSM演进的增强数据速率 计算机视觉 图像(数学) 农业 地理 农学 哲学 生物 植物 语言学 考古
作者
Nitin Rai,Yu Zhang,María B. Villamil,Kirk Howatt,Michael Ostlie,Xin Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108442-108442 被引量:43
标识
DOI:10.1016/j.compag.2023.108442
摘要

Recent advancements in deep learning (DL)-based model optimization techniques have resulted in better weed identification accuracy. However, optimizing these models to identify weeds in images captured using small unmanned aerial system (UAS) has not been much explored. Moreover, leveraging the optimized model on resource constrained edge platform that could be easily integrated with UAS for real-time weed identification could be of significant advantage in developing precision aerial spraying weed management technology. Therefore, this study proposes YOLO-Spot model that is based on YOLOv7-tiny architecture, has been optimized and reconstructed to identify weeds amongst crop plants in aerial images and videos. The optimized model tends to use a smaller number of trainable parameters and reduced feature map sizes for weed identification. Most of the redundant convolutional layers along with feature map sizes have been reduced coupled with an integration of a novel module re-parameterized convolutional layer (RCL) within the neck component of the network. Furthermore, YOLO-Spot model has been trained on the three image resolutions, 320 × 320, 640 × 640 and 1280 × 1280, and has been named as YOLO-Spot_S, YOLO-Spot_M and YOLO-Spot_L, respectively. Out of all the variants, YOLO-Spot_M model has achieved significant prediction accuracy as compared to other variants and a denser layered model YOLOv7-Base. YOLO-Spot_M model utilizes over 75 % less parameters and 86 % reduced GFLOPs compared to YOLOv7-Base. As per the results, YOLO-Spot_M has outperformed YOLOv7-Base by achieving +1.3 % and +2.7 % overall accuracy and mAP(@0.5), respectively. The optimized architecture utilizes 4X less power (in W) when trained on a normal graphical processing unit (GPU). Moreover, converting YOLO-Spot_M to half-precision (FP16) for resource constrained device deployment (AGX Xavier), led to a +0.6 % accuracy and 5X faster weed recognition accuracy in aerial images and videos during inferencing. Based on the metrics obtained, YOLO-Spot_M model is recommended model that could be integrated with remote sensing technologies for site-specific weed management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇上就这样吧应助柯彦采纳,获得50
4秒前
遇上就这样吧应助柯彦采纳,获得50
4秒前
冷傲新柔发布了新的文献求助10
5秒前
7秒前
shw完成签到,获得积分10
8秒前
8秒前
遇上就这样吧应助柯彦采纳,获得50
11秒前
遇上就这样吧应助柯彦采纳,获得50
11秒前
Li应助柯彦采纳,获得50
11秒前
斯寜应助柯彦采纳,获得50
11秒前
Li应助柯彦采纳,获得50
11秒前
Li应助柯彦采纳,获得50
11秒前
Li应助柯彦采纳,获得50
11秒前
Li应助柯彦采纳,获得10
11秒前
Li应助柯彦采纳,获得50
11秒前
遇上就这样吧应助柯彦采纳,获得50
11秒前
峡星牙发布了新的文献求助10
13秒前
21秒前
22秒前
第二支羽毛完成签到,获得积分10
23秒前
领导范儿应助whqpeter采纳,获得10
28秒前
Hiraeth完成签到 ,获得积分10
30秒前
1797472009完成签到 ,获得积分10
33秒前
33秒前
34秒前
W~舞完成签到,获得积分10
35秒前
36秒前
37秒前
浮游应助土豆炖大锅采纳,获得10
38秒前
38秒前
38秒前
从容芮给VDC的求助进行了留言
40秒前
琳666发布了新的文献求助10
40秒前
畅快的涵蕾完成签到,获得积分20
40秒前
华仔应助Bobo采纳,获得10
42秒前
42秒前
内向的火车完成签到 ,获得积分10
44秒前
克泷完成签到 ,获得积分10
45秒前
大个应助平淡的篮球采纳,获得10
45秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Numerical Linear Algebra and Optimization 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018745
求助须知:如何正确求助?哪些是违规求助? 4257909
关于积分的说明 13270388
捐赠科研通 4062605
什么是DOI,文献DOI怎么找? 2222090
邀请新用户注册赠送积分活动 1231161
关于科研通互助平台的介绍 1154045