亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Agricultural weed identification in images and videos by integrating optimized deep learning architecture on an edge computing technology

卷积神经网络 人工智能 杂草 航空影像 计算机科学 特征(语言学) 鉴定(生物学) 模式识别(心理学) 精准农业 深度学习 GSM演进的增强数据速率 计算机视觉 图像(数学) 农业 地理 农学 哲学 生物 植物 语言学 考古
作者
Nitin Rai,Yu Zhang,María B. Villamil,Kirk Howatt,Michael Ostlie,Xin Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108442-108442 被引量:43
标识
DOI:10.1016/j.compag.2023.108442
摘要

Recent advancements in deep learning (DL)-based model optimization techniques have resulted in better weed identification accuracy. However, optimizing these models to identify weeds in images captured using small unmanned aerial system (UAS) has not been much explored. Moreover, leveraging the optimized model on resource constrained edge platform that could be easily integrated with UAS for real-time weed identification could be of significant advantage in developing precision aerial spraying weed management technology. Therefore, this study proposes YOLO-Spot model that is based on YOLOv7-tiny architecture, has been optimized and reconstructed to identify weeds amongst crop plants in aerial images and videos. The optimized model tends to use a smaller number of trainable parameters and reduced feature map sizes for weed identification. Most of the redundant convolutional layers along with feature map sizes have been reduced coupled with an integration of a novel module re-parameterized convolutional layer (RCL) within the neck component of the network. Furthermore, YOLO-Spot model has been trained on the three image resolutions, 320 × 320, 640 × 640 and 1280 × 1280, and has been named as YOLO-Spot_S, YOLO-Spot_M and YOLO-Spot_L, respectively. Out of all the variants, YOLO-Spot_M model has achieved significant prediction accuracy as compared to other variants and a denser layered model YOLOv7-Base. YOLO-Spot_M model utilizes over 75 % less parameters and 86 % reduced GFLOPs compared to YOLOv7-Base. As per the results, YOLO-Spot_M has outperformed YOLOv7-Base by achieving +1.3 % and +2.7 % overall accuracy and mAP(@0.5), respectively. The optimized architecture utilizes 4X less power (in W) when trained on a normal graphical processing unit (GPU). Moreover, converting YOLO-Spot_M to half-precision (FP16) for resource constrained device deployment (AGX Xavier), led to a +0.6 % accuracy and 5X faster weed recognition accuracy in aerial images and videos during inferencing. Based on the metrics obtained, YOLO-Spot_M model is recommended model that could be integrated with remote sensing technologies for site-specific weed management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小卷想读博完成签到,获得积分20
刚刚
4秒前
16秒前
17秒前
烟花应助转转采纳,获得50
20秒前
24秒前
30秒前
34秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
转转发布了新的文献求助50
41秒前
42秒前
昭荃完成签到 ,获得积分0
45秒前
48秒前
52秒前
56秒前
量子星尘发布了新的文献求助10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
chelly发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
专一的忆寒完成签到,获得积分10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
Yucorn完成签到 ,获得积分10
1分钟前
彭冬华发布了新的文献求助10
1分钟前
1分钟前
2分钟前
赘婿应助彭冬华采纳,获得10
2分钟前
科研小黄完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
yoyo完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732038
求助须知:如何正确求助?哪些是违规求助? 5335908
关于积分的说明 15321925
捐赠科研通 4877771
什么是DOI,文献DOI怎么找? 2620640
邀请新用户注册赠送积分活动 1569902
关于科研通互助平台的介绍 1526464