Engineering peroxisomal biosynthetic pathways for maximization of triterpene production in Yarrowia lipolytica

角鲨烯 雅罗维亚 过氧化物酶体 生物化学 生物合成 代谢工程 生物 胞浆 化学 酵母 基因
作者
Yongshuo Ma,Yi Shang,Gregory Stephanopoulos
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (5): e2314798121-e2314798121 被引量:39
标识
DOI:10.1073/pnas.2314798121
摘要

Constructing efficient cell factories for product synthesis is frequently hampered by competing pathways and/or insufficient precursor supply. This is particularly evident in the case of triterpenoid biosynthesis in Yarrowia lipolytica , where squalene biosynthesis is tightly coupled to cytosolic biosynthesis of sterols essential for cell viability. Here, we addressed this problem by reconstructing the complete squalene biosynthetic pathway, starting from acetyl-CoA, in the peroxisome, thus harnessing peroxisomal acetyl-CoA pool and sequestering squalene synthesis in this organelle from competing cytosolic reactions. This strategy led to increasing the squalene levels by 1,300-fold relatively to native cytosolic synthesis. Subsequent enhancement of the peroxisomal acetyl-CoA supply by two independent approaches, 1) converting cellular lipid pool to peroxisomal acetyl-CoA and 2) establishing an orthogonal acetyl-CoA shortcut from CO 2 -derived acetate in the peroxisome, further significantly improved local squalene accumulation. Using these approaches, we constructed squalene-producing strains capable of yielding 32.8 g/L from glucose, and 31.6 g/L from acetate by employing a cofeeding strategy, in bioreactor fermentations. Our findings provide a feasible strategy for protecting intermediate metabolites that can be claimed by multiple reactions by engineering peroxisomes in Y. lipolytica as microfactories for the production of such intermediates and in particular acetyl-CoA-derived metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三川完成签到,获得积分10
刚刚
Costing完成签到,获得积分10
刚刚
1秒前
1秒前
老艺人完成签到,获得积分10
2秒前
UKU完成签到,获得积分20
2秒前
雀跃发布了新的文献求助10
2秒前
2秒前
漠池完成签到,获得积分10
3秒前
Jasper应助淡定芷蝶采纳,获得10
3秒前
格拉希尔完成签到,获得积分10
3秒前
zyq发布了新的文献求助30
3秒前
拉长的冷霜完成签到 ,获得积分10
3秒前
4秒前
简奥斯汀发布了新的文献求助10
5秒前
ShiyuZhang完成签到,获得积分10
6秒前
现实的宝马完成签到,获得积分10
7秒前
7秒前
WSYang完成签到,获得积分10
8秒前
求助人员发布了新的文献求助30
8秒前
onion完成签到,获得积分20
8秒前
8秒前
简单的完成签到,获得积分10
9秒前
何何发布了新的文献求助10
9秒前
9秒前
善学以致用应助Wnnnn采纳,获得10
9秒前
科研通AI6应助Min采纳,获得10
10秒前
10秒前
科研通AI6应助UGO采纳,获得10
10秒前
王阳洋发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
非往完成签到,获得积分10
13秒前
13秒前
13秒前
子怡完成签到,获得积分10
13秒前
13秒前
13秒前
Zxj发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601001
求助须知:如何正确求助?哪些是违规求助? 4686544
关于积分的说明 14844858
捐赠科研通 4679334
什么是DOI,文献DOI怎么找? 2539149
邀请新用户注册赠送积分活动 1506013
关于科研通互助平台的介绍 1471253