PractiCPP: a deep learning approach tailored for extremely imbalanced datasets in cell-penetrating peptide prediction

深度学习 人工智能 计算机科学 鉴定(生物学) 机器学习 源代码 特征(语言学) 嵌入 数据挖掘 生物 操作系统 植物 哲学 语言学
作者
Kexin Shi,Yuanpeng Xiong,Yu Wang,Yifan Deng,Wenjia Wang,Bing‐Yi Jing,Xin Gao
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (2) 被引量:20
标识
DOI:10.1093/bioinformatics/btae058
摘要

Abstract Motivation Effective drug delivery systems are paramount in enhancing pharmaceutical outcomes, particularly through the use of cell-penetrating peptides (CPPs). These peptides are gaining prominence due to their ability to penetrate eukaryotic cells efficiently without inflicting significant damage to the cellular membrane, thereby ensuring optimal drug delivery. However, the identification and characterization of CPPs remain a challenge due to the laborious and time-consuming nature of conventional methods, despite advances in proteomics. Current computational models, however, are predominantly tailored for balanced datasets, an approach that falls short in real-world applications characterized by a scarcity of known positive CPP instances. Results To navigate this shortfall, we introduce PractiCPP, a novel deep-learning framework tailored for CPP prediction in highly imbalanced data scenarios. Uniquely designed with the integration of hard negative sampling and a sophisticated feature extraction and prediction module, PractiCPP facilitates an intricate understanding and learning from imbalanced data. Our extensive computational validations highlight PractiCPP’s exceptional ability to outperform existing state-of-the-art methods, demonstrating remarkable accuracy, even in datasets with an extreme positive-to-negative ratio of 1:1000. Furthermore, through methodical embedding visualizations, we have established that models trained on balanced datasets are not conducive to practical, large-scale CPP identification, as they do not accurately reflect real-world complexities. In summary, PractiCPP potentially offers new perspectives in CPP prediction methodologies. Its design and validation, informed by real-world dataset constraints, suggest its utility as a valuable tool in supporting the acceleration of drug delivery advancements. Availability and implementation The source code of PractiCPP is available on Figshare at https://doi.org/10.6084/m9.figshare.25053878.v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
放眼天下完成签到 ,获得积分10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
慕青应助Otto Curious采纳,获得20
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
3秒前
big ben完成签到 ,获得积分0
3秒前
4秒前
揽月yue完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
英姑应助KLM采纳,获得10
4秒前
彩色梦菡完成签到,获得积分10
4秒前
QIXIAO发布了新的文献求助10
4秒前
Lexi28发布了新的文献求助10
5秒前
科目三应助KYX采纳,获得10
5秒前
科研通AI6应助寒冷黎云采纳,获得10
5秒前
桐桐应助zhi采纳,获得10
5秒前
得失心的诅咒完成签到 ,获得积分10
6秒前
dilli完成签到 ,获得积分10
6秒前
jyjy完成签到,获得积分10
6秒前
刻苦千琴完成签到,获得积分10
7秒前
李婧祎完成签到,获得积分10
7秒前
嘟嘟发布了新的文献求助10
8秒前
Zz完成签到,获得积分10
9秒前
9秒前
9秒前
卢街娃儿完成签到,获得积分10
9秒前
10秒前
11秒前
彭于晏应助西哥采纳,获得10
11秒前
Akim应助西哥采纳,获得10
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
The Tangram Book: The Story of the Chinese Puzzle With over 2000 Puzzles to Solve 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5451227
求助须知:如何正确求助?哪些是违规求助? 4559068
关于积分的说明 14271332
捐赠科研通 4482862
什么是DOI,文献DOI怎么找? 2455287
邀请新用户注册赠送积分活动 1446081
关于科研通互助平台的介绍 1422181