Non-contact impact load identification based on intelligent visual sensing technology

鉴定(生物学) 加速度计 加速度 计算机科学 流离失所(心理学) 杠杆(统计) 接触力 应变计 结构健康监测 影响 模拟 工程类 人工智能 结构工程 生物 植物 心理学 物理 经典力学 量子力学 心理治疗师 操作系统
作者
Shengfei Zhang,Pinghe Ni,Jianian Wen,Qiang Han,Xiuli Du,Kun Xu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (6): 3525-3544 被引量:4
标识
DOI:10.1177/14759217241227365
摘要

Accurate identification of impact loads is vital for structural assessment and design. Traditional methods rely on complex equipment, such as accelerometers or strain gauge, which can be expensive and prone to failure. This study introduces a non-contact intelligent identification approach incorporating visual sensing technology, providing a convenient means to identify impact loads. Numerical simulations explore the differences in identifying impact forces through acceleration and displacement responses, particularly by considering such variables as measurement noise and number of measurement points. A meticulously designed experiment verified the feasibility of the proposed method for measuring the displacement and velocity of rapidly moving targets, and evaluated its performance in terms of accuracy. A series of impact loading experiments were conducted on a simply supported girder bridge model to validate the effectiveness of the proposed impact force identification method. Results indicate strong agreement between displacement response measurements and percentile meters. The proposed non-contact method accurately identifies single or continuous impact loads, with a minimum peak relative error of 0.2%. This study represents a pioneering application of intelligent visual sensing technology in the field of impact load identification. Moreover, the current research introduces a novel approach to address the challenges faced by conventional methods in identifying impact loads. Future research can leverage the groundwork laid by this study to further optimize and expand the proposed method, enhancing its capabilities and fully harnessing its potential to offer advanced solutions in structural health monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助ZCY采纳,获得10
1秒前
火星上凤完成签到,获得积分10
2秒前
hdx完成签到 ,获得积分10
3秒前
AHa发布了新的文献求助10
3秒前
WANGCHU发布了新的文献求助10
4秒前
5秒前
搜集达人应助铀氪锂锂采纳,获得10
5秒前
bill完成签到,获得积分10
5秒前
huangdq6完成签到 ,获得积分10
6秒前
科研小白发布了新的文献求助10
10秒前
10秒前
善学以致用应助YYYYWZ采纳,获得10
11秒前
Desly发布了新的文献求助10
13秒前
哈哈哈完成签到,获得积分20
16秒前
脑洞疼应助WANGCHU采纳,获得10
17秒前
17秒前
FashionBoy应助迷路中的骑手采纳,获得10
19秒前
huohaha完成签到,获得积分10
20秒前
22秒前
fanstic330发布了新的文献求助10
23秒前
Hello应助Desly采纳,获得10
23秒前
Tao驳回了充电宝应助
23秒前
zxt完成签到,获得积分20
24秒前
虚心的飞飞完成签到 ,获得积分10
25秒前
26秒前
27秒前
英俊的铭应助666采纳,获得10
27秒前
chelsea完成签到,获得积分20
27秒前
Becky完成签到,获得积分10
28秒前
季不住完成签到,获得积分10
28秒前
SYLH应助优雅夜南采纳,获得10
30秒前
lalafish完成签到,获得积分10
30秒前
科研通AI5应助zxt采纳,获得30
31秒前
chelsea发布了新的文献求助10
33秒前
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
搜集达人应助科研通管家采纳,获得10
35秒前
何钦俊完成签到 ,获得积分10
35秒前
冰魂应助科研通管家采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303