亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Simulations of disordered matter in 3D with the morphological autoregressive protocol (MAP) and convolutional neural networks

计算机科学 卷积神经网络 分子动力学 水模型 量子 人工智能 比例(比率) 材料科学 生物系统 统计物理学 计算科学 化学 物理 计算化学 量子力学 生物
作者
Ata Madanchi,Michael Kilgour,Frederik Zysk,Thomas D. Kühne,Lena Simine
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:160 (2) 被引量:8
标识
DOI:10.1063/5.0174615
摘要

Disordered molecular systems, such as amorphous catalysts, organic thin films, electrolyte solutions, and water, are at the cutting edge of computational exploration at present. Traditional simulations of such systems at length scales relevant to experiments in practice require a compromise between model accuracy and quality of sampling. To address this problem, we have developed an approach based on generative machine learning called the Morphological Autoregressive Protocol (MAP), which provides computational access to mesoscale disordered molecular configurations at linear cost at generation for materials in which structural correlations decay sufficiently rapidly. The algorithm is implemented using an augmented PixelCNN deep learning architecture that, as we previously demonstrated, produces excellent results in 2 dimensions (2D) for mono-elemental molecular systems. Here, we extend our implementation to multi-elemental 3D and demonstrate performance using water as our test system in two scenarios: (1) liquid water and (2) samples conditioned on the presence of pre-selected motifs. We trained the model on small-scale samples of liquid water produced using path-integral molecular dynamics simulations, including nuclear quantum effects under ambient conditions. MAP-generated water configurations are shown to accurately reproduce the properties of the training set and to produce stable trajectories when used as initial conditions in quantum dynamics simulations. We expect our approach to perform equally well on other disordered molecular systems in which structural correlations decay sufficiently fast while offering unique advantages in situations when the disorder is quenched rather than equilibrated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挚智完成签到 ,获得积分10
2秒前
Shyee完成签到 ,获得积分0
3秒前
彭于晏应助王一一一一采纳,获得10
9秒前
13秒前
小蝶完成签到 ,获得积分10
17秒前
18秒前
HP发布了新的文献求助10
19秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
19秒前
朝槿完成签到 ,获得积分10
21秒前
22秒前
23秒前
嘻嘻发布了新的文献求助10
25秒前
27秒前
qaxt完成签到,获得积分10
28秒前
赵悦完成签到,获得积分10
28秒前
28秒前
嘻嘻完成签到,获得积分20
32秒前
赵悦发布了新的文献求助10
32秒前
Hello应助踏实的惜萍采纳,获得10
36秒前
37秒前
41秒前
阿菜完成签到,获得积分10
41秒前
49秒前
传奇3应助赵悦采纳,获得10
50秒前
kk应助科研通管家采纳,获得20
50秒前
情怀应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
BowieHuang应助科研通管家采纳,获得10
50秒前
50秒前
56秒前
领导范儿应助sxmt123456789采纳,获得10
1分钟前
Elijah完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
英俊的铭应助XIN_0116采纳,获得10
1分钟前
sxmt123456789发布了新的文献求助10
1分钟前
李昕123完成签到 ,获得积分10
1分钟前
merry6669完成签到 ,获得积分10
1分钟前
个性的电源完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622242
关于积分的说明 14582135
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500139
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795