Predicting Cyanide Degradability and Destruction Using Artificial Neural Networks: A Case Study in West Azerbaijan, Iran”

氰化物 化学 环境化学 环境修复 环境科学 土壤科学 无机化学 污染 生态学 生物
作者
Sakineh Rostami Tarzam,Farid Gholamreza Fahimi,Reza Amirnejad,Ahmad Tavana,Aptin Rahnavard
出处
期刊:Soil and Sediment Contamination: An International Journal [Informa]
卷期号:33 (8): 1219-1234
标识
DOI:10.1080/15320383.2023.2300722
摘要

The presence of cyanide compounds in soil can lead to the formation and evaporation of hydrogen cyanide (HCN), while some of these compounds can undergo conversion by microorganisms present in the soil. However, high concentrations of cyanide can be toxic to soil microorganisms. During the gold extraction of mines, sodium cyanide (NaCN) solution is commonly used which results in a significant amount of cyanide waste that is regarded as an environmental pollutant. Previous studies have proposed physical, chemical, and biological methods to eliminate cyanide, but they have not achieved optimal efficiency. Unfortunately, the potential of artificial intelligence (AI) in this domain has been overlooked. Artificial Neural Network (ANN) models, specifically the multilayer perceptron (MLP) and simple linear regression, can significantly enhance and expedite the cyanide remediation process due to their remarkable predictive capabilities. In this study, an MLP and simple linear regression were employed to predict the biodegradation procedures of cyanide in soil. The study focused on cyanide waste generated by gold extraction factories and utilized environmental factors such as initial waste cyanide concentration, pH, soil and environmental temperature, humidity, chloride concentration, alkaline, electrical conductivity, precipitation, evaporation intensity, cyanide concentration, and initial pH as input data for the artificial neural network. The results of the MLP model revealed that electrical conductivity is the most influential factor in predicting the cyanide rate and initial pH of the waste soil. Conversely, the results of the simple linear regression indicated that the variables with the greatest impact on cyanide concentration are electrical conductivity (0.881), time (0.862), and alkalinity (0.724). By leveraging AI techniques such as ANN, this study demonstrates the potential for improved cyanide remediation. The integration of environmental factors and predictive models can contribute to more effective strategies for addressing cyanide pollution in soil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Twonej应助哗哗哗采纳,获得20
刚刚
唐若冰发布了新的文献求助10
刚刚
wangxz关注了科研通微信公众号
1秒前
Nanami_ii发布了新的文献求助10
2秒前
2秒前
飞槐发布了新的文献求助30
3秒前
烟花应助研友_ZlxK6Z采纳,获得10
3秒前
4秒前
4秒前
11完成签到,获得积分10
4秒前
赘婿应助L416采纳,获得10
6秒前
freebird应助lele采纳,获得20
6秒前
威武的夜绿完成签到,获得积分20
6秒前
TCMGG发布了新的文献求助30
7秒前
7秒前
浮游应助帆船采纳,获得10
8秒前
8秒前
8秒前
YuanyinGuo发布了新的文献求助10
9秒前
Nanami_ii完成签到,获得积分10
9秒前
www发布了新的文献求助10
9秒前
栗子发布了新的文献求助10
9秒前
SJDCA完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
FashionBoy应助危机的映梦采纳,获得10
11秒前
11秒前
11秒前
Hello应助Mine采纳,获得10
12秒前
隐形曼青应助嘉嘉采纳,获得10
13秒前
XX完成签到,获得积分20
13秒前
大模型应助TCMGG采纳,获得30
13秒前
kaikai发布了新的文献求助10
14秒前
yy发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
zoe_zzz完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648297
求助须知:如何正确求助?哪些是违规求助? 4775251
关于积分的说明 15043616
捐赠科研通 4807292
什么是DOI,文献DOI怎么找? 2570677
邀请新用户注册赠送积分活动 1527431
关于科研通互助平台的介绍 1486437