已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Empirical Study on Correlations Between Deep Neural Network Fairness and Neuron Coverage Criteria

计算机科学 人工神经网络 相关性 测试套件 一套 机器学习 监狱 实证研究 质量(理念) 考试(生物学) 人工智能 公平性度量 深层神经网络 计量经济学 统计 测试用例 数学 心理学 回归分析 生物 考古 历史 哲学 认识论 犯罪学 无线 几何学 古生物学 电信 吞吐量
作者
Wei Zheng,Lidan Lin,Xiaoxue Wu,Xiang Chen
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (3): 391-412 被引量:33
标识
DOI:10.1109/tse.2023.3349001
摘要

Recently, with the widespread use of deep neural networks (DNNs) in high-stakes decision-making systems (such as fraud detection and prison sentencing), concerns have arisen about the fairness of DNNs in terms of the potential negative impact they may have on individuals and society. Therefore, fairness testing has become an important research topic in DNN testing. At the same time, the neural network coverage criteria (such as criteria based on neuronal activation) is considered as an adequacy test for DNN white-box testing. It is implicitly assumed that improving the coverage can enhance the quality of test suites. Nevertheless, the correlation between DNN fairness (a test property) and coverage criteria (a test method) has not been adequately explored. To address this issue, we conducted a systematic empirical study on seven coverage criteria, six fairness metrics, three fairness testing techniques, and five bias mitigation methods on five DNN models and nine fairness datasets to assess the correlation between coverage criteria and DNN fairness. Our study achieved the following findings: 1) with the increase in the size of the test suite, some of the coverage and fairness metrics changed significantly, as the size of the test suite increased; 2) the statistical correlation between coverage criteria and DNN fairness is limited; and 3) after bias mitigation for improving the fairness of DNN, the change pattern in coverage criteria is different; 4) Models debiased by different bias mitigation methods have a lower correlation between coverage and fairness compared to the original models. Our findings cast doubt on the validity of coverage criteria concerning DNN fairness (i.e., increasing the coverage may even have a negative impact on the fairness of DNNs). Therefore, we warn DNN testers against blindly pursuing higher coverage of coverage criteria at the cost of test properties of DNNs (such as fairness).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
00发布了新的文献求助30
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Shelby完成签到,获得积分10
4秒前
bb完成签到,获得积分10
5秒前
5秒前
squrreil发布了新的文献求助20
7秒前
MaRin完成签到,获得积分10
8秒前
Shelby发布了新的文献求助10
8秒前
刘欣欢完成签到 ,获得积分10
10秒前
10秒前
MaRin发布了新的文献求助10
10秒前
浮浮世世发布了新的文献求助30
11秒前
显隐完成签到,获得积分10
13秒前
14秒前
bkagyin应助沙代云采纳,获得10
15秒前
浮游应助Haha采纳,获得10
15秒前
俏皮代柔发布了新的文献求助10
16秒前
Ava应助szr采纳,获得10
17秒前
英俊的铭应助MaRin采纳,获得10
17秒前
BowieHuang应助piao采纳,获得10
18秒前
bb发布了新的文献求助10
18秒前
19秒前
思源应助ppppp采纳,获得10
20秒前
ung发布了新的文献求助10
20秒前
123完成签到,获得积分10
21秒前
zdsa发布了新的文献求助10
22秒前
Haha完成签到,获得积分10
22秒前
路人甲完成签到,获得积分10
24秒前
25秒前
风花雪月完成签到 ,获得积分10
26秒前
28秒前
积极烧鹅完成签到,获得积分10
29秒前
CodeCraft应助kktsy采纳,获得10
30秒前
31秒前
小左完成签到 ,获得积分10
31秒前
科研通AI6应助zdsa采纳,获得10
33秒前
33秒前
szr发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542636
求助须知:如何正确求助?哪些是违规求助? 4628886
关于积分的说明 14610075
捐赠科研通 4570066
什么是DOI,文献DOI怎么找? 2505534
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454220