亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Representation for Weakly-Supervised Spatio-Temporal Action Detection

计算机科学 人工智能 图形 模式识别(心理学) 机器学习 动作识别 注释 班级(哲学) 理论计算机科学
作者
Dinesh Singh
标识
DOI:10.1109/ijcnn54540.2023.10192033
摘要

Spatio-temporal action recognition and localization are crucial in several computer vision applications including video surveillance, video captioning to name a few. However, most of the existing action recognition and localization approaches are for offline use, perform well only on trimmed action clips. Also, they need precise annotations at the clip, frame, and pixel levels which is labor-intensive and thus undermines their usage for real-world large-scale scenarios. In this paper, we propose a weakly-supervised spatio-temporal action recognition and localization based on graph representation in untrimmed videos. More specifically, we propose an efficient graph representation of videos using only the clip level annotations, while existing approaches are either supervised or unsupervised learning approach. For graph construction, the local actions are determined based on the key interesting demeanor in an action clip and assigned the class label the same as that of the clip. This weak annotation impacts both action recognition and localization significantly because the local actions have considerable intra-class variability and inter-class similarity. To handle the intra-class variability and inter-class similarity, we use a weakly-supervised deep multiple instance ranking framework on the local action descriptors. To classify a graph of local actions into one of the action classes, we use a support vector machine along with a graph kernel and then localize the recognized action as a non-cubic shaped-portion of the video based on local actions in the graph. The experimental results show that the proposed approach outperforms the state-of-the-art methods on the three benchmark datasets, namely, THUMOS14, UCF-Sports, and JHMDB-21.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
satsuki发布了新的文献求助10
刚刚
糖霜果子完成签到,获得积分10
7秒前
浮游应助satsuki采纳,获得10
11秒前
21秒前
Shicheng完成签到,获得积分10
29秒前
勤勤恳恳写论文完成签到 ,获得积分10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
飞天大南瓜发布了新的文献求助200
1分钟前
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
2分钟前
李健应助Harrison采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得30
3分钟前
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
3分钟前
3分钟前
能干凡松完成签到 ,获得积分10
3分钟前
satsuki发布了新的文献求助10
3分钟前
cc完成签到,获得积分10
4分钟前
孙老师完成签到 ,获得积分10
4分钟前
4分钟前
共享精神应助satsuki采纳,获得10
4分钟前
Harrison发布了新的文献求助10
4分钟前
倾卿如玉完成签到 ,获得积分10
4分钟前
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得30
5分钟前
rose发布了新的文献求助10
5分钟前
rose完成签到,获得积分10
5分钟前
善学以致用应助Hayat采纳,获得30
5分钟前
在水一方应助平常的乘云采纳,获得10
6分钟前
研友_Z335gZ完成签到,获得积分20
6分钟前
6分钟前
平常的乘云完成签到,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078082
求助须知:如何正确求助?哪些是违规求助? 4296958
关于积分的说明 13387611
捐赠科研通 4119509
什么是DOI,文献DOI怎么找? 2256032
邀请新用户注册赠送积分活动 1260368
关于科研通互助平台的介绍 1193786