High-through counting of Chinese cabbage trichomes based on deep learning and trinocular stereo microscope

毛状体 油菜 种质资源 深度学习 卷积神经网络 人工智能 计算机科学 生物 模式识别(心理学) 植物 芸苔属
作者
Xiyao Li,Jingwen Chen,Yong He,Guofeng Yang,LI Zhong-ren,Yimin Tao,Yanda Li,Yu Li,Li Huang,Xuping Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108134-108134 被引量:10
标识
DOI:10.1016/j.compag.2023.108134
摘要

The trichome trait is one of the important phenotypes for variety classification and breeding improvement of Chinese cabbage (Brassica campestris L. syn. B. rapa). However, obtaining the number of trichomes per unit area on leaves is a time-consuming and laborious detection work, especially when hundreds of germplasm resources need to be evaluated. Therefore, this study constructed the first diverse Chinese cabbage trichome dataset called CCTD with10,955 RGB images and proposed a deep learning model for trichome detection called TRI-YOLOv8. By adding the RepVGG module in the Backbone, adding a new detection layer in the Neck and replacing the loss function with Normalized Gaussian Wasserstein Distance Loss, the detection performance of the model for small trichomes was effectively improved. At the same time, Ghost convolution was used to reduce memory consumption and speed up inference. The experimental results showed that TRI-YOLOv8 outperformed other classical detection models. AP50 was as high as 94.4%, which was 3.8% higher than YOLOv8n. Furthermore, the number of trichomes per unit area was obtained by TRI-YOLOv8 and combined with genome-wide association study and selective sweep analysis, the candidate gene BraA03g029740.3.5C (STP7) was screened out. Overall, this study achieved the accurate detection and counting of trichomes, and provided a feasible plan for breeders to digitally analyze phenotypes, automatically identify and screen Chinese cabbage germplasm resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
给好评发布了新的文献求助10
1秒前
隐形曼青应助暴躁的香氛采纳,获得10
1秒前
李健应助失眠的耳机采纳,获得10
1秒前
科研通AI5应助zln采纳,获得10
3秒前
7秒前
10秒前
自然书桃发布了新的文献求助10
12秒前
今天学习了吗完成签到 ,获得积分10
14秒前
小马甲应助waa采纳,获得10
14秒前
15秒前
15秒前
maodianandme发布了新的文献求助10
17秒前
失眠的耳机完成签到,获得积分10
20秒前
时光发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得30
22秒前
科研通AI5应助科研通管家采纳,获得30
22秒前
夏惋清完成签到 ,获得积分0
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
23秒前
情怀应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
共享精神应助科研通管家采纳,获得30
23秒前
23秒前
25秒前
28秒前
顾矜应助lbt采纳,获得10
29秒前
30秒前
慕青应助melody采纳,获得10
30秒前
郭振鹏完成签到,获得积分10
30秒前
35秒前
太阳完成签到,获得积分10
37秒前
37秒前
WFLLL发布了新的文献求助10
37秒前
waa发布了新的文献求助10
40秒前
小琦无敌发布了新的文献求助10
42秒前
FashionBoy应助虚拟的夜白采纳,获得10
43秒前
华仔应助dennisysz采纳,获得10
49秒前
斯文败类应助dennisysz采纳,获得10
49秒前
Hello应助dennisysz采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133