计算机科学
光学
灵敏度(控制系统)
计算机视觉
镜头(地质)
职位(财务)
人工智能
物理
电子工程
工程类
财务
经济
作者
Heejoo Choi,Hong Je Kang,Yan Huang,M. J. Yoo,Henry Quach,John Kam,Daewook Kim
摘要
Deflectometry is a versatile optical testing tool used in various fields, from astronomy to industrial applications, due to its non-null testing capability which facilitates precise measurement despite challenging optical surfaces and system layout constraints. In this manuscript, we present novel variational advancements to traditional deflectometry, towards universal functionality and system friendliness. Traditional dark-field illumination is an inspection technique that is sometimes used to detect particles on a specular surface. Problems arise in its repeatability, as an intensity-based measurement is vulnerably dependent on the testing conditions of time, limiting its ability to be used in automated fashion. The first advancement leverages phase algorithms commonly seen in deflectometry; by adding a secondary light source (normal to the surface) and modulating each source's intensity with a time-varying sinusoid. The phase-based information has a higher sensitivity to the light scattered from a defect producing a more robust computational image process method that is now insensitive to the environment. The second advancement is an alignment method to obtain lower-order shape. While deflectometry proves effective in measuring mid-to-high frequency surface shape, it faces challenges when assessing low-order shape measurements like power, astigmatism, and coma due to relative position and alignment error between the unit under test (UUT) and the deflectometry system. To avert the necessity of additional instruments like a coordinate measuring machine, laser trackers, or interferometers, we leveraged computational fiducials and sensitivity matrices to identify and address misalignments effectively. With enhanced capabilities and system-friendly features, our advanced deflectometry techniques provide powerful options in optical testing. By addressing the challenges in low-order shape measurements and incorporating dark field testing, our approaches extend the potential of deflectometry as a valuable tool in optical metrology across a broad spectrum of industries and scientific endeavors.
科研通智能强力驱动
Strongly Powered by AbleSci AI