亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of a Machine Learning Predictive Model for Recurrent Acute Pancreatitis

医学 急性胰腺炎 胰腺炎 重症监护医学 内科学
作者
Wensen Ren,Kang Zou,Yuqing Chen,Shu Huang,Bei Luo,Jiao Jiang,Wei Zhang,Xiaomin Shi,Lei Shi,Xiaolin Zhong,Muhan Lü,Xiaowei Tang
出处
期刊:Journal of Clinical Gastroenterology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (9): 923-930 被引量:6
标识
DOI:10.1097/mcg.0000000000001936
摘要

Background and Aim: Acute pancreatitis is the main cause of hospitalization for pancreatic disease. Some patients tend to have recurrent episodes after experiencing an episode of acute pancreatitis. This study aimed to construct predictive models for recurrent acute pancreatitis (RAP). Methods: A total of 531 patients who were hospitalized for the first episode of acute pancreatitis at the Affiliated Hospital of Southwest Medical University from January 2018 to December 2019 were enrolled in the study. We confirmed whether the patients had a second episode until December 31, 2021, through an electronic medical record system and telephone or WeChat follow-up. Clinical and follow-up data of patients were collected and randomly allocated to the training and test sets at a ratio of 7:3. The training set was used to select the best model, and the selected model was tested with the test set. The area under the receiver operating characteristic curves, sensitivity, specificity, positive predictive value, negative predictive value, accuracy, decision curve, and calibration plots were used to assess the efficacy of the models. Shapley additive explanation values were used to explain the model. Results: Considering multiple indices, XGBoost was the best model. The area under the receiver operating characteristic curves, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model in the test set were 0.779, 0.763, 0.883, 0.647, 0.341, and 0.922, respectively. According to the Shapley additive explanation values, drinking, smoking, higher levels of triglyceride, and the occurrence of ANC are associated with RAP. Conclusion: The XGBoost model shows good performance in predicting RAP, which may help identify high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kukudou2完成签到,获得积分20
3秒前
5秒前
8秒前
10秒前
chuhaner完成签到,获得积分20
13秒前
Nextf1sh发布了新的文献求助10
14秒前
陶醉的难破完成签到,获得积分10
15秒前
隐形曼青应助Nextf1sh采纳,获得10
23秒前
Criminology34应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
33秒前
36秒前
李爱国应助文章多多采纳,获得10
37秒前
Benhnhk21完成签到,获得积分10
37秒前
1746435297发布了新的文献求助10
43秒前
macleod发布了新的文献求助10
1分钟前
小灰灰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
circlez19完成签到 ,获得积分10
2分钟前
千早爱音完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
1746435297完成签到,获得积分20
2分钟前
1746435297关注了科研通微信公众号
2分钟前
李爱国应助汤露豪采纳,获得10
2分钟前
xtheuv发布了新的文献求助10
2分钟前
3分钟前
汤露豪发布了新的文献求助10
3分钟前
xtheuv完成签到,获得积分20
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639622
求助须知:如何正确求助?哪些是违规求助? 4749297
关于积分的说明 15006893
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563858
邀请新用户注册赠送积分活动 1522782
关于科研通互助平台的介绍 1482480