An end-to-end workflow for multiplexed image processing and analysis

生物导体 计算机科学 工作流程 预处理器 可视化 分割 人工智能 降维 模式识别(心理学) 数据挖掘 计算机视觉 数据库 基因 生物化学 化学
作者
Jonas Windhager,Vito Riccardo Tomaso Zanotelli,Daniel Schulz,Lasse Meyer,Michelle Daniel,Bernd Bodenmiller,Nils Eling
出处
期刊:Nature Protocols [Springer Nature]
卷期号:18 (11): 3565-3613 被引量:163
标识
DOI:10.1038/s41596-023-00881-0
摘要

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell–cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5–6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ . An integrated workflow for multiplexed tissue image processing and analysis, including interactive inspection of raw data, cell segmentation, feature extraction, single-cell analysis and spatial analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Darius完成签到,获得积分10
1秒前
1秒前
饭团完成签到,获得积分10
1秒前
清脆松发布了新的文献求助10
2秒前
2秒前
2秒前
顺科研发布了新的文献求助10
3秒前
3秒前
NaveahNi完成签到,获得积分10
3秒前
3秒前
烟花应助Ding采纳,获得10
4秒前
Jenny完成签到,获得积分10
5秒前
6秒前
6秒前
小杭76应助bwod采纳,获得10
6秒前
6秒前
孙雪君完成签到,获得积分20
7秒前
李尧轩发布了新的文献求助10
7秒前
大个应助wendy采纳,获得10
7秒前
江晓龙发布了新的文献求助10
7秒前
7秒前
8秒前
syx完成签到,获得积分10
8秒前
Hello应助小幸运采纳,获得10
8秒前
烂漫的白薇完成签到,获得积分10
9秒前
思源应助可爱语芹采纳,获得10
9秒前
9秒前
wwe发布了新的文献求助10
10秒前
10秒前
科目三应助hrt采纳,获得10
10秒前
盏盏发布了新的文献求助10
11秒前
11秒前
Xiongtao发布了新的文献求助10
12秒前
恣意完成签到 ,获得积分10
12秒前
苏莉婷发布了新的文献求助10
13秒前
科研通AI6应助zxl采纳,获得10
13秒前
聆听完成签到,获得积分10
13秒前
英姑应助张立敏采纳,获得10
13秒前
可爱的函函应助syx采纳,获得10
13秒前
干净的醉波完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341805
求助须知:如何正确求助?哪些是违规求助? 4477914
关于积分的说明 13937122
捐赠科研通 4374126
什么是DOI,文献DOI怎么找? 2403300
邀请新用户注册赠送积分活动 1396120
关于科研通互助平台的介绍 1368147