An end-to-end workflow for multiplexed image processing and analysis

生物导体 计算机科学 工作流程 预处理器 可视化 分割 人工智能 降维 模式识别(心理学) 数据挖掘 计算机视觉 数据库 基因 生物化学 化学
作者
Jonas Windhager,Vito Riccardo Tomaso Zanotelli,Daniel Schulz,Lasse Meyer,Michelle Daniel,Bernd Bodenmiller,Nils Eling
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:18 (11): 3565-3613 被引量:131
标识
DOI:10.1038/s41596-023-00881-0
摘要

Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell–cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5–6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ . An integrated workflow for multiplexed tissue image processing and analysis, including interactive inspection of raw data, cell segmentation, feature extraction, single-cell analysis and spatial analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
庞伟泽发布了新的文献求助10
4秒前
无花果应助Mandy采纳,获得10
4秒前
gc完成签到 ,获得积分10
6秒前
duohongrui完成签到 ,获得积分10
7秒前
复杂的听蓉完成签到,获得积分10
8秒前
9秒前
满当当发布了新的文献求助10
9秒前
喜看财经发布了新的文献求助10
11秒前
15秒前
杜杨帆完成签到,获得积分10
15秒前
chenren完成签到,获得积分10
16秒前
回穆完成签到 ,获得积分10
17秒前
流川封完成签到,获得积分10
18秒前
满当当完成签到,获得积分10
20秒前
20秒前
刘sir完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
27秒前
27秒前
冰魂应助安好采纳,获得10
29秒前
莫愁发布了新的文献求助10
30秒前
魔力巴啦啦完成签到 ,获得积分10
31秒前
科研通AI5应助心灵美凝蝶采纳,获得10
31秒前
小肥完成签到 ,获得积分10
31秒前
shadow发布了新的文献求助10
31秒前
从心从心完成签到,获得积分10
33秒前
knight发布了新的文献求助10
33秒前
35秒前
fire完成签到 ,获得积分10
36秒前
雪白鸿涛完成签到,获得积分10
37秒前
hzl完成签到,获得积分10
38秒前
邓文完成签到 ,获得积分10
38秒前
39秒前
科研通AI2S应助11采纳,获得10
39秒前
cassandra1231发布了新的文献求助10
40秒前
期期完成签到 ,获得积分10
40秒前
Jasper应助咸鱼王的挣扎采纳,获得10
41秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862670
求助须知:如何正确求助?哪些是违规求助? 3405167
关于积分的说明 10643644
捐赠科研通 3128668
什么是DOI,文献DOI怎么找? 1725356
邀请新用户注册赠送积分活动 831025
科研通“疑难数据库(出版商)”最低求助积分说明 779516