Stress-only versus rest-stress SPECT MPI in the detection and diagnosis of myocardial ischemia and infarction by machine learning

冠状动脉疾病 心肌灌注成像 计算机辅助设计 缺血 医学 休息(音乐) 压力(语言学) 接收机工作特性 内科学 心脏病学 计算机科学 语言学 工程类 哲学 工程制图
作者
Fanghu Wang,Hui Yuan,Jieqin Lv,Han Xu,Zidong Zhou,Wantong Lu,Lijun Lu,Lei Jiang
出处
期刊:Nuclear Medicine Communications [Lippincott Williams & Wilkins]
卷期号:45 (1): 35-44 被引量:2
标识
DOI:10.1097/mnm.0000000000001782
摘要

Rest-stress SPECT myocardial perfusion imaging (MPI) is widely used to evaluate coronary artery disease (CAD). We aim to evaluate stress-only versus rest-stress MPI in diagnosing CAD by machine learning (ML).A total of 276 patients with suspected CAD were randomly divided into training (184 patients) and validation (92 patients) cohorts. Variables extracted from clinical, physiological, and rest-stress SPECT MPI were screened. Stress-only and rest-stress MPI using ML were established and compared using the training cohort. Then the diagnostic performance of two models in diagnosing myocardial ischemia and infarction was evaluated in the validation cohort.Six ML models based on stress-only MPI selected summed stress score, summed wall thickness score of stress%, and end-diastolic volume of stress as key variables and performed equally good as rest-stress MPI in detecting CAD [area under the curve (AUC): 0.863 versus 0.877, P = 0.519]. Furthermore, stress-only MPI showed a reasonable prediction of reversible deficit, as shown by rest-stress MPI (AUC: 0.861). Subsequently, nomogram models using the above-stated stress-only MPI variables showed a good prediction of CAD and reversible perfusion deficit in training and validation cohorts.Stress-only MPI demonstrated similar diagnostic performance compared with rest-stress MPI using 6 ML algorithms. Stress-only MPI with ML models can diagnose CAD and predict ischemia from scar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助聪慧曲奇采纳,获得10
刚刚
刚刚
研友_VZG7GZ应助lindalin采纳,获得10
1秒前
风车车完成签到,获得积分10
4秒前
如意2023发布了新的文献求助20
4秒前
车成协发布了新的文献求助10
4秒前
芋头读文献完成签到,获得积分10
6秒前
Yacon发布了新的文献求助10
6秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
9秒前
廿叁完成签到,获得积分10
10秒前
铜锣湾小研仔应助pkinglu采纳,获得10
11秒前
11秒前
敏感的咖啡豆完成签到 ,获得积分10
13秒前
斯文败类应助Benhnhk21采纳,获得10
14秒前
w(゚Д゚)w发布了新的文献求助10
15秒前
博修发布了新的文献求助30
16秒前
粉粉发布了新的文献求助10
16秒前
Young完成签到,获得积分10
17秒前
SciGPT应助jiayoua采纳,获得10
18秒前
车成协完成签到,获得积分20
20秒前
Hey完成签到 ,获得积分10
21秒前
naomi完成签到,获得积分10
24秒前
25秒前
研友_VZG7GZ应助博修采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803558
求助须知:如何正确求助?哪些是违规求助? 3348465
关于积分的说明 10338603
捐赠科研通 3064504
什么是DOI,文献DOI怎么找? 1682623
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038