Self-Care Mental Health App Intervention for Post–Intensive Care Syndrome–Family: A Randomized Pilot Study

医学 随机对照试验 焦虑 干预(咨询) 萧条(经济学) 心理健康 重症监护室 重症监护 生活质量(医疗保健) 物理疗法 精神科 内科学 护理部 重症监护医学 宏观经济学 经济
作者
Amy Petrinec,Cindy Wilk,Joel W. Hughes,Melissa D. Zullo,Richard L. George
出处
期刊:American Journal of Critical Care [American Association of Critical-Care Nurses]
卷期号:32 (6): 440-448 被引量:2
标识
DOI:10.4037/ajcc2023800
摘要

Post-intensive care syndrome-family (PICS-F) is a constellation of adverse psychological symptoms experienced by family members of critically ill patients during and after acute illness. Cognitive behavioral therapy delivered using smartphone technology is a novel approach for PICS-F symptom self-management.To determine the efficacy of smartphone delivery of cognitive behavioral therapy in reducing the prevalence and severity of PICS-F symptoms in family members of critically ill patients.The study had a randomized controlled longitudinal design with control and intervention groups composed of family members of patients admitted to 2 adult intensive care units. The intervention consisted of a mental health app loaded on participants' personal smartphones. The study time points were upon enrollment (within 5 days of intensive care unit admission; time 1), 30 days after enrollment (time 2), and 60 days after enrollment (time 3). Study measures included demographic data, PICS-F symptoms, mental health self-efficacy, health-related quality of life, and app use.The study sample consisted of 60 predominantly White (72%) and female (78%) family members (30 intervention, 30 control). Anxiety and depression symptom severity decreased significantly over time in the intervention group but not in the control group. Family members logged in to the app a mean of 11.4 times (range, 1-53 times) and spent a mean of 50.16 minutes (range, 1.87-245.92 minutes) using the app.Delivery of cognitive behavioral therapy to family members of critically ill patients via a smartphone app shows some efficacy in reducing PICS-F symptoms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李伟峰发布了新的文献求助10
1秒前
2秒前
柯续缘发布了新的文献求助10
2秒前
Mori完成签到,获得积分10
2秒前
求知完成签到,获得积分20
3秒前
Bryn_Wang完成签到,获得积分10
4秒前
微笑正豪完成签到,获得积分10
4秒前
5秒前
852应助好运常在采纳,获得10
5秒前
丁丁发布了新的文献求助10
5秒前
隐形曼青应助Mori采纳,获得10
5秒前
Chiuchiu完成签到,获得积分10
6秒前
Adler完成签到,获得积分10
6秒前
坡坡大王完成签到,获得积分10
7秒前
xhs12138完成签到,获得积分10
7秒前
7秒前
limit完成签到,获得积分20
7秒前
曼曼完成签到,获得积分10
8秒前
zer0完成签到,获得积分10
8秒前
DJ完成签到,获得积分10
8秒前
英俊延恶发布了新的文献求助10
8秒前
NICKPLZ完成签到,获得积分10
9秒前
大模型应助鲜于枫采纳,获得10
9秒前
autumn完成签到,获得积分10
9秒前
10秒前
SDM完成签到 ,获得积分10
11秒前
一颗馒头发布了新的文献求助10
11秒前
酷炫的凝梦完成签到,获得积分10
11秒前
故意的成协完成签到 ,获得积分10
12秒前
辞镜发布了新的文献求助10
12秒前
poppysss完成签到,获得积分10
12秒前
nani发布了新的文献求助50
13秒前
jiabu完成签到,获得积分10
13秒前
杜小杜发布了新的文献求助10
13秒前
木子草甜完成签到,获得积分10
13秒前
13秒前
木木完成签到,获得积分10
14秒前
xmy完成签到,获得积分10
15秒前
陈明娃完成签到,获得积分10
15秒前
wangrblzu应助Eason小川采纳,获得10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834076
求助须知:如何正确求助?哪些是违规求助? 3376485
关于积分的说明 10493557
捐赠科研通 3095982
什么是DOI,文献DOI怎么找? 1704818
邀请新用户注册赠送积分活动 820115
科研通“疑难数据库(出版商)”最低求助积分说明 771868