UWB NLOS Identification and Mitigation Based on Gramian Angular Field and Parallel Deep Learning Model

非视线传播 计算机科学 均方误差 卷积神经网络 人工智能 深度学习 残余物 无线 算法 模式识别(心理学) 电信 数学 统计
作者
Bowen Deng,T. Xu,Maode Yan
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (22): 28513-28525 被引量:5
标识
DOI:10.1109/jsen.2023.3323564
摘要

Ultrawideband (UWB) wireless localization technology has been widely applied in the field of indoor localization due to its good ability of noise resistance, strong penetration, and high measurement accuracy. However, the performance of UWB-based localization technology becomes poor when suffering from nonline-of-sight (NLOS) propagation conditions. Thus, it is necessary to identify NLOS propagation and mitigate the NLOS error. In this article, a novel NLOS identification and mitigation method based on multiinputs parallel deep learning model and Gramian angular field (GAF) is proposed. We utilize GAF to transform 1-D channel impulse response (CIR) signal into 2-D colored images, which adds additional high-level abstract features to the CIR signals. In the model training phase, the convolutional neural network (CNN) is used to extract temporal features from original CIR signals, and the residual network (ResNet) is used to extract visual features from GAF-encoded images. Besides, the received signal strength (RSS) information is also considered as an auxiliary feature to assist in identifying some NLOS scenarios with similar CIR features and further reduce the NLOS error. The experimental results show that our method has good ability in both line of sight (LOS) and NLOS binary classification and NLOS multiclassification, with accuracy over 96%. Additionally, based on the identification results, the proposed method can reduce the mean absolute error (MAE) and root mean square error (RMSE) of the range error from 65.61 and 96.82 cm to 4.19 and 6.95 cm, respectively. In the real indoor localization experiment, the proposed method can improve the localization accuracy by over 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
Yolo完成签到 ,获得积分10
6秒前
绝尘发布了新的文献求助10
7秒前
shijin完成签到,获得积分10
8秒前
赘婿应助绝尘采纳,获得10
11秒前
sym关闭了sym文献求助
13秒前
14秒前
梦游游游完成签到,获得积分10
14秒前
秋裤批发完成签到 ,获得积分10
17秒前
18秒前
lijianguo完成签到,获得积分10
19秒前
20秒前
21秒前
奇拉维特完成签到 ,获得积分10
22秒前
星辰大海应助abbb采纳,获得10
22秒前
科研小兔发布了新的文献求助10
23秒前
踏实一斩发布了新的文献求助10
24秒前
Sailo发布了新的文献求助10
24秒前
clm完成签到 ,获得积分10
25秒前
26秒前
青橘短衫发布了新的文献求助10
30秒前
dingz完成签到,获得积分10
30秒前
31秒前
大橙子发布了新的文献求助10
37秒前
花无双完成签到,获得积分0
38秒前
南北完成签到,获得积分10
41秒前
Felicity完成签到 ,获得积分10
44秒前
华仔应助bqss采纳,获得10
44秒前
哈哈客完成签到,获得积分10
45秒前
风筝鱼完成签到 ,获得积分10
46秒前
魔法师完成签到,获得积分0
47秒前
脑洞疼应助沉默的板凳采纳,获得10
48秒前
mmd完成签到 ,获得积分10
49秒前
是小越啊完成签到,获得积分10
49秒前
52秒前
阮大帅气发布了新的文献求助10
55秒前
活泼新儿完成签到 ,获得积分10
1分钟前
爱听歌半山完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325220
关于积分的说明 10221927
捐赠科研通 3040359
什么是DOI,文献DOI怎么找? 1668771
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549