Improved particle swarm optimization based on multi-strategy fusion for UAV path planning

粒子群优化 计算机科学 数学优化 运动规划 聚类分析 乙状窦函数 惯性 局部最优 路径(计算) 趋同(经济学) 人工智能 算法 数学 人工神经网络 物理 机器人 经典力学 经济 程序设计语言 经济增长
作者
Z. B. Ye,Huan Li,Wenhong Wei
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald (MCB UP)]
卷期号:17 (2): 213-235 被引量:5
标识
DOI:10.1108/ijicc-06-2023-0140
摘要

Purpose Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path. Design/methodology/approach Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning. Findings Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality. Originality/value Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
ycy完成签到,获得积分20
2秒前
非而者厚应助sunnyliu采纳,获得10
3秒前
3秒前
Orange应助roy采纳,获得10
3秒前
4秒前
key_girl发布了新的文献求助10
4秒前
ranlan完成签到,获得积分10
4秒前
4秒前
邓仕文发布了新的文献求助10
5秒前
5秒前
闵杰发布了新的文献求助10
6秒前
心若晴朗,何来雨天完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
8秒前
张一亦可完成签到,获得积分10
8秒前
平淡的井完成签到 ,获得积分10
9秒前
RR发布了新的文献求助10
9秒前
9秒前
ywzwszl完成签到,获得积分0
9秒前
普馨娴发布了新的文献求助10
10秒前
10秒前
11秒前
小太阳完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320766
求助须知:如何正确求助?哪些是违规求助? 4462561
关于积分的说明 13887241
捐赠科研通 4353585
什么是DOI,文献DOI怎么找? 2391256
邀请新用户注册赠送积分活动 1384911
关于科研通互助平台的介绍 1354655