Inverse design of transmission-type linear-to-circular polarization control metasurface based on deep learning

反向 人工神经网络 计算机科学 卷积神经网络 反问题 深度学习 算法 人工智能 数学 几何学 数学分析
作者
Yanwen Hu,Yaodong Ma,Tingrong Zhang,Shoudong Li,Xiaoqiang Chen
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:56 (47): 475001-475001 被引量:8
标识
DOI:10.1088/1361-6463/acefdf
摘要

Abstract To solve the time-consuming and complex design problems, the deep learning method is used to realize the inverse predictive design of a transmission-type linear-to-circular polarization control metasurface (TLCPCM). Firstly, the target-generation neural network model (TGNNM) is constructed based on a fully connected neural network. The model selects the critical features of the required electromagnetic performance as design targets, and maps low-dimensional design targets to high-dimensional electromagnetic performance. Secondly, taking the output data of the TGNNM as input data, an inverse-mapping neural network model (IMNNM) is constructed by a convolutional neural network. The prediction performance of the IMNNM is compared with two other inverse-mapping models. The research results show that the IMNNM outperforms the other two networks. Finally, combining TGNNM and IMNNM, four sets of TLCPCM structural parameters are predicted. The research results show that the electromagnetic performances of the metasurface determined by the predicted structural parameters are generally consistent with the given design targets. On this basis, one experimental sample is manufactured. The measurement results are consistent with the simulation results. The research results demonstrate the validity and feasibility of the inverse predictive design method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助cm_1231采纳,获得10
1秒前
12完成签到,获得积分20
1秒前
鞥翁发布了新的文献求助10
2秒前
一叶知秋应助努力采纳,获得10
2秒前
yellger关注了科研通微信公众号
2秒前
tina发布了新的文献求助10
2秒前
虚幻百川应助xiye采纳,获得10
2秒前
科研通AI6应助琥珀采纳,获得10
2秒前
halo发布了新的文献求助10
2秒前
wzt发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
小蘑菇应助自觉葶采纳,获得10
5秒前
1234完成签到,获得积分10
5秒前
Godweless发布了新的文献求助10
5秒前
LX完成签到,获得积分10
5秒前
虫虫发布了新的文献求助10
5秒前
怕孤独的聪展完成签到 ,获得积分10
5秒前
科研通AI6应助ZCT采纳,获得10
7秒前
8秒前
小蘑菇应助刘一一采纳,获得10
9秒前
tina完成签到,获得积分10
9秒前
小马甲应助gxc采纳,获得10
9秒前
Chaos完成签到,获得积分20
9秒前
9秒前
苏千景完成签到,获得积分10
10秒前
水墨橙子发布了新的文献求助10
10秒前
星黛露完成签到,获得积分10
11秒前
11秒前
华仔应助77在七月采纳,获得10
11秒前
嘛哩嘛哩轰完成签到,获得积分10
12秒前
12秒前
wanci应助好运来采纳,获得10
12秒前
hxy发布了新的文献求助10
12秒前
13秒前
14秒前
左转发布了新的文献求助20
14秒前
漠然完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521185
求助须知:如何正确求助?哪些是违规求助? 4612661
关于积分的说明 14534683
捐赠科研通 4550154
什么是DOI,文献DOI怎么找? 2493511
邀请新用户注册赠送积分活动 1474660
关于科研通互助平台的介绍 1446156