Informer-Based Temperature Prediction Using Observed and Numerical Weather Prediction Data

均方误差 计算机科学 人工神经网络 杠杆(统计) 依赖关系(UML) 时间序列 数据挖掘 机器学习 人工智能 预测建模 预测技巧 统计 数学
作者
Jimin Jun,Hong Kook Kim
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (16): 7047-7047 被引量:4
标识
DOI:10.3390/s23167047
摘要

This paper proposes an Informer-based temperature prediction model to leverage data from an automatic weather station (AWS) and a local data assimilation and prediction system (LDAPS), where the Informer as a variant of a Transformer was developed to better deal with time series data. Recently, deep-learning-based temperature prediction models have been proposed, demonstrating successful performances, such as conventional neural network (CNN)-based models, bi-directional long short-term memory (BLSTM)-based models, and a combination of both neural networks, CNN–BLSTM. However, these models have encountered issues due to the lack of time data integration during the training phase, which also lead to the persistence of a long-term dependency problem in the LSTM models. These limitations have culminated in a performance deterioration when the prediction time length was extended. To overcome these issues, the proposed model first incorporates time-periodic information into the learning process by generating time-periodic information and inputting it into the model. Second, the proposed model replaces the LSTM with an Informer as an alternative to mitigating the long-term dependency problem. Third, a series of fusion operations between AWS and LDAPS data are executed to examine the effect of each dataset on the temperature prediction performance. The performance of the proposed temperature prediction model is evaluated via objective measures, including the root-mean-square error (RMSE) and mean absolute error (MAE) over different timeframes, ranging from 6 to 336 h. The experiments showed that the proposed model relatively reduced the average RMSE and MAE by 0.25 °C and 0.203 °C, respectively, compared with the results of the CNN–BLSTM-based model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
丘比特应助1177采纳,获得10
2秒前
小胭胭完成签到,获得积分10
4秒前
4秒前
微笑的秀儿完成签到 ,获得积分10
5秒前
哈哈哈完成签到,获得积分20
6秒前
xibei完成签到 ,获得积分10
6秒前
一定长发布了新的文献求助10
7秒前
7秒前
老王完成签到,获得积分10
7秒前
二十九发布了新的文献求助10
8秒前
ljy2015完成签到 ,获得积分10
8秒前
9秒前
10秒前
安陌煜发布了新的文献求助10
10秒前
12秒前
1177发布了新的文献求助10
14秒前
17秒前
qiao应助上岸上岸上岸采纳,获得10
18秒前
李健应助1177采纳,获得10
19秒前
Youtenter发布了新的文献求助10
20秒前
HEAUBOOK应助爱听歌笑寒采纳,获得10
20秒前
27秒前
28秒前
NexusExplorer应助zy采纳,获得10
30秒前
蟑螂恶霸发布了新的文献求助10
30秒前
31秒前
32秒前
34秒前
hakunamatata完成签到 ,获得积分10
35秒前
misong发布了新的文献求助10
35秒前
哒哒哒哒完成签到,获得积分10
37秒前
37秒前
swy完成签到 ,获得积分10
37秒前
洁净磬发布了新的文献求助10
37秒前
yuaner发布了新的文献求助10
40秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
蟑螂恶霸完成签到,获得积分20
41秒前
Zzz完成签到 ,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782063
求助须知:如何正确求助?哪些是违规求助? 3327547
关于积分的说明 10232059
捐赠科研通 3042501
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799555
科研通“疑难数据库(出版商)”最低求助积分说明 758825