共轭体系
双折射
材料科学
各向异性
结晶学
晶体工程
氢键
Crystal(编程语言)
超分子化学
纳米技术
晶体结构
分子
化学
光学
聚合物
物理
计算机科学
有机化学
复合材料
程序设计语言
作者
Ruyi Niu,Xiaona Li,Zhihua Yang,Juanjuan Lu,Xueling Hou,Shujuan Han,Shilie Pan,Miriding Mutailipu
出处
期刊:Small
[Wiley]
日期:2025-10-07
卷期号:: e11399-e11399
标识
DOI:10.1002/smll.202511399
摘要
Abstract Assembling structurally diverse π‐conjugated units into a single, coherently aligned architecture presents a significant challenge for achieving enhanced optical anisotropy for optical crystals. Herein, the directional molecular alignment driven by hydrogen bonding (H‐bonding) is confirmed to be the key to addressing this challenge by designing and synthesizing a novel birefringent crystal, Cs 2 [B 3 O 3 F 2 (OH) 2 ](NO 3 )·[B 3 O 3 (OH) 3 ]. Its anionic framework is constructed via the unprecedented, H‐bond‐directed assembly of three distinct, isolated π‐conjugated building blocks: [B 3 O 3 (OH) 3 ], [B 3 O 3 F 2 (OH) 2 ] − , and [NO 3 ] − . Complementary H‐bonding interactions strategically overcome the inherent difficulty of aligning these disparate π‐systems. This enforced coplanar alignment yields a record‐high birefringence (Δ n = 0.149@546 nm) among alkali/alkaline‐earth metal borates, surpassing commercialized α‐BaB 2 O 4 , while achieving a large bandgap of 5.82 eV, ideal for UV applications. First‐principles calculations confirm that the planar π‐conjugated groups dominate the giant optical anisotropy, while the H‐bond network is crucial for enforcing their coplanarity and overcoming assembly limitations. Cs 2 [B 3 O 3 F 2 (OH) 2 ](NO 3 )·[B 3 O 3 (OH) 3 ] establishes a new paradigm for engineering high‐performance birefringent crystals by utilizing complementary H‐bonding interactions to directionally assemble diverse π‐conjugated units.
科研通智能强力驱动
Strongly Powered by AbleSci AI